Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032.
Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6322-E6331. doi: 10.1073/pnas.1701368114. Epub 2017 Jul 17.
In physiological settings, all nucleic acids motor proteins must travel along substrates that are crowded with other proteins. However, the physical basis for how motor proteins behave in these highly crowded environments remains unknown. Here, we use real-time single-molecule imaging to determine how the ATP-dependent translocase RecBCD travels along DNA occupied by tandem arrays of high-affinity DNA binding proteins. We show that RecBCD forces each protein into its nearest adjacent neighbor, causing rapid disruption of the protein-nucleic acid interaction. This mechanism is not the same way that RecBCD disrupts isolated nucleoprotein complexes on otherwise naked DNA. Instead, molecular crowding itself completely alters the mechanism by which RecBCD removes tightly bound protein obstacles from DNA.
在生理环境中,所有的核酸马达蛋白都必须沿着与其他蛋白质拥挤的底物上移动。然而,马达蛋白在这些高度拥挤的环境中行为的物理基础仍然未知。在这里,我们使用实时单分子成像来确定依赖于 ATP 的转运酶 RecBCD 如何沿着由高亲和力 DNA 结合蛋白串联阵列占据的 DNA 移动。我们表明 RecBCD 将每个蛋白推向其最近的相邻蛋白,导致蛋白-核酸相互作用的快速破坏。这种机制与 RecBCD 破坏其他情况下裸露 DNA 上的孤立核蛋白复合物的方式不同。相反,分子拥挤本身完全改变了 RecBCD 从 DNA 上清除紧密结合的蛋白障碍物的机制。