Suppr超能文献

心跳识别(Beat-ID):迈向基于心电图波形形态的计算成本低的单心跳生物特征身份验证系统。

Beat-ID: Towards a computationally low-cost single heartbeat biometric identity check system based on electrocardiogram wave morphology.

作者信息

Paiva Joana S, Dias Duarte, Cunha João P S

机构信息

Biomedical Research And INnovation (BRAIN), Centre for Biomedical Engineering Research (C-BER), INESC Technology and Science, Porto, Portugal.

Physics and Astronomy Department, Faculty of Sciences, University of Porto, Porto, Portugal.

出版信息

PLoS One. 2017 Jul 18;12(7):e0180942. doi: 10.1371/journal.pone.0180942. eCollection 2017.

Abstract

In recent years, safer and more reliable biometric methods have been developed. Apart from the need for enhanced security, the media and entertainment sectors have also been applying biometrics in the emerging market of user-adaptable objects/systems to make these systems more user-friendly. However, the complexity of some state-of-the-art biometric systems (e.g., iris recognition) or their high false rejection rate (e.g., fingerprint recognition) is neither compatible with the simple hardware architecture required by reduced-size devices nor the new trend of implementing smart objects within the dynamic market of the Internet of Things (IoT). It was recently shown that an individual can be recognized by extracting features from their electrocardiogram (ECG). However, most current ECG-based biometric algorithms are computationally demanding and/or rely on relatively large (several seconds) ECG samples, which are incompatible with the aforementioned application fields. Here, we present a computationally low-cost method (patent pending), including simple mathematical operations, for identifying a person using only three ECG morphology-based characteristics from a single heartbeat. The algorithm was trained/tested using ECG signals of different duration from the Physionet database on more than 60 different training/test datasets. The proposed method achieved maximal averaged accuracy of 97.450% in distinguishing each subject from a ten-subject set and false acceptance and rejection rates (FAR and FRR) of 5.710±1.900% and 3.440±1.980%, respectively, placing Beat-ID in a very competitive position in terms of the FRR/FAR among state-of-the-art methods. Furthermore, the proposed method can identify a person using an average of 1.020 heartbeats. It therefore has FRR/FAR behavior similar to obtaining a fingerprint, yet it is simpler and requires less expensive hardware. This method targets low-computational/energy-cost scenarios, such as tiny wearable devices (e.g., a smart object that automatically adapts its configuration to the user). A hardware proof-of-concept implementation is presented as an annex to this paper.

摘要

近年来,已开发出更安全、更可靠的生物识别方法。除了增强安全性的需求外,媒体和娱乐行业也一直在新兴的用户自适应对象/系统市场中应用生物识别技术,以使这些系统对用户更友好。然而,一些最先进的生物识别系统(如虹膜识别)的复杂性或其高误识率(如指纹识别)既不符合小型设备所需的简单硬件架构,也不符合物联网(IoT)动态市场中实现智能对象的新趋势。最近有研究表明,可以通过从心电图(ECG)中提取特征来识别个体。然而,目前大多数基于ECG的生物识别算法计算量很大和/或依赖相对较长(几秒)的ECG样本,这与上述应用领域不兼容。在此,我们提出一种计算成本低的方法(正在申请专利),包括简单的数学运算,仅使用单个心跳的三个基于ECG形态的特征来识别一个人。该算法使用来自Physionet数据库的不同时长的ECG信号在60多个不同的训练/测试数据集上进行了训练/测试。所提出的方法在从十个受试者的集合中区分每个受试者时,平均准确率最高达到97.450%,误识率和拒识率(FAR和FRR)分别为5.710±1.900%和3.440±1.980%,这使得Beat-ID在最先进方法的FRR/FAR方面处于非常有竞争力的位置。此外,所提出的方法平均使用1.020次心跳就能识别一个人。因此,它具有与获取指纹相似的FRR/FAR行为,但更简单且所需硬件成本更低。此方法针对低计算/能量成本的场景,如微型可穿戴设备(例如能自动根据用户调整配置的智能对象)。本文附录中展示了一个硬件概念验证实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61df/5515426/7d71f0f37b5c/pone.0180942.g001.jpg

相似文献

1
2
Securing Internet-of-Medical-Things networks using cancellable ECG recognition.
Sci Rep. 2024 May 13;14(1):10871. doi: 10.1038/s41598-024-54830-2.
3
Person identification in irregular cardiac conditions using electrocardiogram signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3772-5. doi: 10.1109/IEMBS.2011.6090644.
4
Phase-domain Deep Patient-ECG Image Learning for Zero-effort Smart Health Security.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2622-2628. doi: 10.1109/EMBC.2019.8856515.
5
Joint Feature Extraction and Classifier Design for ECG-Based Biometric Recognition.
IEEE J Biomed Health Inform. 2016 Mar;20(2):460-8. doi: 10.1109/JBHI.2015.2402199. Epub 2015 Feb 10.
7
Individual Biometric Identification Using Multi-Cycle Electrocardiographic Waveform Patterns.
Sensors (Basel). 2018 Mar 28;18(4):1005. doi: 10.3390/s18041005.
8
Data Improvement Model Based on ECG Biometric for User Authentication and Identification.
Sensors (Basel). 2020 May 21;20(10):2920. doi: 10.3390/s20102920.
9
ECG authentication system design incorporating a convolutional neural network and generalized S-Transformation.
Comput Biol Med. 2018 Nov 1;102:168-179. doi: 10.1016/j.compbiomed.2018.09.027. Epub 2018 Sep 29.
10
A novel biometric authentication approach using electrocardiogram signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4259-62. doi: 10.1109/EMBC.2013.6610486.

引用本文的文献

本文引用的文献

1
Changes in ST, QT and RR ECG intervals during acute stress in firefighters: a pilot study.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3378-3381. doi: 10.1109/EMBC.2016.7591452.
2
Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation for Classification of Epileptiform EEG.
Int J Neural Syst. 2017 Jun;27(4):1750005. doi: 10.1142/S0129065717500058. Epub 2016 Sep 13.
3
Support vector machine model of developmental brain gene expression data for prioritization of Autism risk gene candidates.
Bioinformatics. 2016 Dec 1;32(23):3611-3618. doi: 10.1093/bioinformatics/btw498. Epub 2016 Aug 9.
4
Subject identification via ECG fiducial-based systems: influence of the type of QT interval correction.
Comput Methods Programs Biomed. 2015 Oct;121(3):127-36. doi: 10.1016/j.cmpb.2015.05.012. Epub 2015 Jun 25.
5
Bridging the gap: from biometrics to forensics.
Philos Trans R Soc Lond B Biol Sci. 2015 Aug 5;370(1674). doi: 10.1098/rstb.2014.0254.
6
Continuous in-the-field measurement of heart rate: Correlates of drug use, craving, stress, and mood in polydrug users.
Drug Alcohol Depend. 2015 Jun 1;151:159-66. doi: 10.1016/j.drugalcdep.2015.03.024. Epub 2015 Apr 7.
7
Short-term heart rate variability--influence of gender and age in healthy subjects.
PLoS One. 2015 Mar 30;10(3):e0118308. doi: 10.1371/journal.pone.0118308. eCollection 2015.
8
Comparison of formulas for calculation of the corrected QT interval in infants and young children.
J Pediatr. 2015 Apr;166(4):960-4.e1-2. doi: 10.1016/j.jpeds.2014.12.037. Epub 2015 Jan 31.
9
Implementation of a portable device for real-time ECG signal analysis.
Biomed Eng Online. 2014 Dec 10;13:160. doi: 10.1186/1475-925X-13-160.
10
Application of the support vector machine to predict subclinical mastitis in dairy cattle.
ScientificWorldJournal. 2013 Dec 25;2013:603897. doi: 10.1155/2013/603897. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验