1 School of Electrical Engineering and Automation, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, China, Tianjin 300072, China.
Int J Neural Syst. 2017 Jun;27(4):1750005. doi: 10.1142/S0129065717500058. Epub 2016 Sep 13.
Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.
从 EEG 信号中检测癫痫发作是一个具有重要意义的挑战性问题。我们结合自适应最优核时频表示和可视性图,开发了一种从 EEG 信号中检测癫痫发作的新方法。我们从健康受试者和癫痫患者记录的 EEG 信号中构建复杂网络。然后,我们采用聚类系数、聚类系数熵和平均度来描述不同脑状态产生的网络的拓扑结构。此外,我们结合能量偏差和网络度量来识别健康受试者和癫痫患者,并进一步区分无癫痫发作间期和癫痫发作期间的脑状态。设计了三个不同的实验来评估我们方法的性能。结果表明,我们的方法可以实现对癫痫样 EEG 信号的高精度分类。