Subhas Adam V, Adkins Jess F, Rollins Nick E, Naviaux John, Erez Jonathan, Berelson William M
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8175-8180. doi: 10.1073/pnas.1703604114. Epub 2017 Jul 18.
Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.
海水中接近平衡状态的方解石溶解在1000年的时间尺度上对大气[化学式:见原文]的调节有显著贡献。尽管对远离平衡状态的溶解进行了许多研究,但对于海水中方解石溶解的详细机制却知之甚少。在本文中,我们将用碳标记的方解石溶解于天然海水中。我们表明,溶液中随时间演变的[化学式:见原文]富集是大范围饱和状态下溶解和沉淀反应的直接度量。对碳标记固体进行的二次离子质谱分析表明,即使在不饱和条件下也存在沉淀物质。接近平衡时沉淀和溶解的紧密平衡会改变方解石晶体中比一个单层更深的化学成分。这种溶解 - 沉淀平衡在约[化学式:见原文]以下显著向以溶解为主导的机制转变。最后,我们表明酶碳酸酐酶(CA)在所有饱和状态下都会提高溶解速率,且在接近平衡时效果最为明显。这一发现表明[化学式:见原文]的水合速率是海水中方解石溶解的限速步骤。然后,我们在一个结合了溶液化学和对方解石固体几何约束的框架中解释我们的溶解数据。接近平衡时,该框架表明在存在CA的情况下固 - 液界面处的自由能垒降低。该框架还表明在[化学式:见原文]时溶解机制发生了显著变化,我们将其解释为均匀蚀刻坑成核的开始。