Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Centre for Human Drug Research, Leiden, The Netherlands.
Sci Rep. 2017 Jul 18;7(1):5775. doi: 10.1038/s41598-017-06165-4.
Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capture the brain's multi-faceted signature of disease or pharmacological intervention and use machine learning to improve classification performance. Using data from healthy subjects receiving scopolamine we developed an index of the muscarinic acetylcholine receptor antagonist (mAChR) consisting of 14 EEG biomarkers. This mAChR index yielded higher classification performance than any single EEG biomarker with cross-validated accuracy, sensitivity, specificity and precision ranging from 88-92%. The mAChR index also discriminated healthy elderly from patients with Alzheimer's disease (AD); however, an index optimized for AD pathophysiology provided a better classification. We conclude that integrating multiple EEG biomarkers can enhance the accuracy of identifying disease or drug interventions, which is essential for clinical trials.
监测疾病或治疗干预对大脑功能的影响对于临床试验越来越重要,尽管受到个体间变异性和细微影响的阻碍。在这里,我们应用互补的生物标志物算法来分析脑电图 (EEG) 记录,以捕捉疾病或药物干预的大脑多方面特征,并使用机器学习来提高分类性能。使用接受东莨菪碱的健康受试者的数据,我们开发了一个包含 14 个 EEG 生物标志物的毒蕈碱乙酰胆碱受体拮抗剂 (mAChR) 指数。与任何单个 EEG 生物标志物相比,该 mAChR 指数的分类性能更高,交叉验证的准确性、敏感性、特异性和精度范围从 88%到 92%不等。mAChR 指数还可以区分健康的老年人和患有阿尔茨海默病 (AD) 的患者;然而,针对 AD 病理生理学进行优化的指数提供了更好的分类。我们得出结论,整合多个 EEG 生物标志物可以提高识别疾病或药物干预的准确性,这对于临床试验至关重要。