Suppr超能文献

基于 EEG 信号和遗传信息的阿尔茨海默病分类的机器学习算法比较分析。

Comparative analysis of machine learning algorithms for Alzheimer's disease classification using EEG signals and genetic information.

机构信息

Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan.

Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Neurology, China Medical University Hospital, Taichung, 40447, Taiwan; Department of Medicine, China Medical University, Taichung, 40402, Taiwan.

出版信息

Comput Biol Med. 2024 Jun;176:108621. doi: 10.1016/j.compbiomed.2024.108621. Epub 2024 May 17.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairments, and behavioral changes. The presence of abnormal beta-amyloid plaques and tau protein tangles in the brain is known to be associated with AD. However, current limitations of imaging technology hinder the direct detection of these substances. Consequently, researchers are exploring alternative approaches, such as indirect assessments involving monitoring brain signals, cognitive decline levels, and blood biomarkers. Recent studies have highlighted the potential of integrating genetic information into these approaches to enhance early detection and diagnosis, offering a more comprehensive understanding of AD pathology beyond the constraints of existing imaging methods. Our study utilized electroencephalography (EEG) signals, genotypes, and polygenic risk scores (PRSs) as features for machine learning models. We compared the performance of gradient boosting (XGB), random forest (RF), and support vector machine (SVM) to determine the optimal model. Statistical analysis revealed significant correlations between EEG signals and clinical manifestations, demonstrating the ability to distinguish the complexity of AD from other diseases by using genetic information. By integrating EEG with genetic data in an SVM model, we achieved exceptional classification performance, with an accuracy of 0.920 and an area under the curve of 0.916. This study presents a novel approach of utilizing real-time EEG data and genetic background information for multimodal machine learning. The experimental results validate the effectiveness of this concept, providing deeper insights into the actual condition of patients with AD and overcoming the limitations associated with single-oriented data.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是认知能力下降、记忆力减退和行为改变。大脑中存在异常的β-淀粉样斑块和tau 蛋白缠结与 AD 有关。然而,目前成像技术的局限性阻碍了这些物质的直接检测。因此,研究人员正在探索替代方法,例如间接评估,包括监测大脑信号、认知能力下降程度和血液生物标志物。最近的研究强调了将遗传信息纳入这些方法的潜力,以增强早期检测和诊断,提供对 AD 病理学的更全面理解,超越现有成像方法的限制。我们的研究利用脑电图(EEG)信号、基因型和多基因风险评分(PRS)作为机器学习模型的特征。我们比较了梯度提升(XGB)、随机森林(RF)和支持向量机(SVM)的性能,以确定最佳模型。统计分析显示 EEG 信号与临床表现之间存在显著相关性,表明通过使用遗传信息可以区分 AD 的复杂性与其他疾病。通过在 SVM 模型中整合 EEG 和遗传数据,我们实现了出色的分类性能,准确率为 0.920,曲线下面积为 0.916。本研究提出了一种利用实时 EEG 数据和遗传背景信息进行多模态机器学习的新方法。实验结果验证了这一概念的有效性,为 AD 患者的实际状况提供了更深入的了解,并克服了单数据导向的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验