Suppr超能文献

基于生物标志物的流行病学风险:循环钙水平与年龄、死亡率和虚弱的相关性在不同人群中差异很大。

The risks of biomarker-based epidemiology: Associations of circulating calcium levels with age, mortality, and frailty vary substantially across populations.

机构信息

Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC, J1H 5N4, Canada.

Institute for Biostatistics and Informatics in Medicine and Ageing Research, IBIMA Rostock University Medical Center, Ernst-Heydemann, Str. 8, 8057 Rostock, Germany.

出版信息

Exp Gerontol. 2018 Jul 1;107:11-17. doi: 10.1016/j.exger.2017.07.011. Epub 2017 Jul 16.

Abstract

Recent studies have shown contradictory associations between calcium levels and health outcomes. We suspected these conflicting results were the consequence of more general issues with how biomarkers are analyzed in epidemiological studies, particularly in the context of aging. To demonstrate the risks of typical analyses, we used three longitudinal aging cohort studies and their demographic subsets to analyze how calcium levels change with age and predict risk of mortality and frailty. We show that calcium levels either increase or decrease with age depending on the population, and positively or negatively predict frailty depending on the population and analysis; both age and frailty results showed substantial heterogeneity. Mortality analyses revealed few significant associations but were likely underpowered. Variation in population composition (demographics, diseases, diet, etc.) leads to contradictory findings in the literature for calcium and likely for other biomarkers. Epidemiological studies of biomarkers are particularly sensitive to population composition both because biomarkers generally have non-linear and often non-monotonic relationships with other key variables, notably age and health outcomes, and because there is strong interdependence among biomarkers, which are integrated into complex regulatory networks. Consequently, most biomarkers have multiple physiological roles and are implicated in multiple pathologies. We argue that epidemiological studies of aging using biomarkers must account for these factors, and suggest methods to do this.

摘要

最近的研究表明,钙水平与健康结果之间存在矛盾的关联。我们怀疑这些相互矛盾的结果是由于流行病学研究中生物标志物分析中更普遍的问题造成的,特别是在衰老的背景下。为了展示典型分析的风险,我们使用了三个纵向衰老队列研究及其人口统计学子样本,分析了钙水平如何随年龄变化以及预测死亡率和脆弱性的风险。我们表明,钙水平随着年龄的增长而增加或减少,具体取决于人群,并且根据人群和分析,积极或消极地预测脆弱性;年龄和脆弱性结果均表现出显著的异质性。死亡率分析显示出很少有显著的关联,但可能是由于缺乏动力。人口构成(人口统计学、疾病、饮食等)的变化导致钙和其他生物标志物的文献中出现矛盾的发现。生物标志物的流行病学研究对人口构成特别敏感,这是因为生物标志物通常与其他关键变量(尤其是年龄和健康结果)具有非线性且常常非单调的关系,并且生物标志物之间存在很强的相互依存关系,这些关系被整合到复杂的调节网络中。因此,大多数生物标志物具有多种生理作用,并与多种病理有关。我们认为,使用生物标志物进行衰老的流行病学研究必须考虑到这些因素,并提出了一些解决方法。

相似文献

2
Estimating Biological Age in the Singapore Longitudinal Aging Study.
J Gerontol A Biol Sci Med Sci. 2020 Sep 25;75(10):1913-1920. doi: 10.1093/gerona/glz146.
3
Higher serum uric acid as a risk factor for frailty in older adults: A nationwide population-based study.
J Cachexia Sarcopenia Muscle. 2024 Oct;15(5):2134-2142. doi: 10.1002/jcsm.13561. Epub 2024 Aug 18.
4
Longitudinal analysis on inflammatory markers and frailty progression: based on the English longitudinal study of aging.
Eur Geriatr Med. 2024 Oct;15(5):1323-1330. doi: 10.1007/s41999-024-00998-9. Epub 2024 Jul 11.
8
Blood-Based Biomarkers and Long-term Risk of Frailty-Experience From the Swedish AMORIS Cohort.
J Gerontol A Biol Sci Med Sci. 2021 Aug 13;76(9):1643-1652. doi: 10.1093/gerona/glab137.
9
An objective metric of individual health and aging for population surveys.
Popul Health Metr. 2022 Mar 31;20(1):11. doi: 10.1186/s12963-022-00289-0.

引用本文的文献

1
Biological Aging and Venous Thromboembolism: A Review of Telomeres and Beyond.
Biomedicines. 2024 Dec 25;13(1):15. doi: 10.3390/biomedicines13010015.
2
Moving towards the detection of frailty with biomarkers: A population health study.
Aging Cell. 2024 Feb;23(2):e14030. doi: 10.1111/acel.14030. Epub 2023 Dec 8.
3
Biomarkers of aging for the identification and evaluation of longevity interventions.
Cell. 2023 Aug 31;186(18):3758-3775. doi: 10.1016/j.cell.2023.08.003.
4
Identifying the Biomarker Profile of Pre-Frail and Frail People: A Cross-Sectional Analysis from UK Biobank.
Int J Environ Res Public Health. 2023 Jan 29;20(3):2421. doi: 10.3390/ijerph20032421.
5
Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study.
Eur J Nutr. 2023 Apr;62(3):1217-1229. doi: 10.1007/s00394-022-03066-9. Epub 2022 Dec 9.
6
Multidimensional associations between nutrient intake and healthy ageing in humans.
BMC Biol. 2022 Sep 1;20(1):196. doi: 10.1186/s12915-022-01395-z.
7
Plasma Growth and Differentiation Factor 15 Predict Longitudinal Changes in Bone Parameters in Women, but Not in Men.
J Gerontol A Biol Sci Med Sci. 2022 Oct 6;77(10):1951-1958. doi: 10.1093/gerona/glac079.
9
Prediction of Mortality in Hemodialysis Patients Using Moving Multivariate Distance.
Front Physiol. 2021 Mar 11;12:612494. doi: 10.3389/fphys.2021.612494. eCollection 2021.
10
Robust Physiological Metrics From Sparsely Sampled Networks.
Front Physiol. 2021 Feb 10;12:624097. doi: 10.3389/fphys.2021.624097. eCollection 2021.

本文引用的文献

1
Classification for Longevity Potential: The Use of Novel Biomarkers.
Front Public Health. 2016 Oct 28;4:233. doi: 10.3389/fpubh.2016.00233. eCollection 2016.
2
Age and Sex Distributions of Age-Related Biomarker Values in Healthy Older Adults from the Long Life Family Study.
J Am Geriatr Soc. 2016 Nov;64(11):e189-e194. doi: 10.1111/jgs.14522. Epub 2016 Oct 26.
3
Racial Differences in Association of Serum Calcium with Mortality and Incident Cardio- and Cerebrovascular Events.
J Clin Endocrinol Metab. 2016 Dec;101(12):4851-4859. doi: 10.1210/jc.2016-1802. Epub 2016 Sep 15.
4
Deep biomarkers of aging are population-dependent.
Aging (Albany NY). 2016 Sep 8;8(9):2253-2255. doi: 10.18632/aging.101034.
5
Dynamics of biomarkers in relation to aging and mortality.
Mech Ageing Dev. 2016 Jun;156:42-54. doi: 10.1016/j.mad.2016.04.010. Epub 2016 Apr 29.
6
Circulating calcium concentrations, vascular disease and mortality: a systematic review.
J Intern Med. 2016 Jun;279(6):524-40. doi: 10.1111/joim.12464. Epub 2016 Jan 8.
7
Age-related frailty and its association with biological markers of ageing.
BMC Med. 2015 Jul 13;13:161. doi: 10.1186/s12916-015-0400-x.
8
Quantification of biological aging in young adults.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4104-10. doi: 10.1073/pnas.1506264112. Epub 2015 Jul 6.
9
Complex systems dynamics in aging: new evidence, continuing questions.
Biogerontology. 2016 Feb;17(1):205-20. doi: 10.1007/s10522-015-9584-x. Epub 2015 May 20.
10
Statistical distance as a measure of physiological dysregulation is largely robust to variation in its biomarker composition.
PLoS One. 2015 Apr 13;10(4):e0122541. doi: 10.1371/journal.pone.0122541. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验