Suppr超能文献

与衰老和死亡率相关的生物标志物动态变化

Dynamics of biomarkers in relation to aging and mortality.

作者信息

Arbeev Konstantin G, Ukraintseva Svetlana V, Yashin Anatoliy I

机构信息

Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, 2024 W. Main St., Room A102F, Box 90420, Durham, NC 27705, USA.

Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, 2024 W. Main St., Room A102F, Box 90420, Durham, NC 27705, USA.

出版信息

Mech Ageing Dev. 2016 Jun;156:42-54. doi: 10.1016/j.mad.2016.04.010. Epub 2016 Apr 29.

Abstract

Contemporary longitudinal studies collect repeated measurements of biomarkers allowing one to analyze their dynamics in relation to mortality, morbidity, or other health-related outcomes. Rich and diverse data collected in such studies provide opportunities to investigate how various socio-economic, demographic, behavioral and other variables can interact with biological and genetic factors to produce differential rates of aging in individuals. In this paper, we review some recent publications investigating dynamics of biomarkers in relation to mortality, which use single biomarkers as well as cumulative measures combining information from multiple biomarkers. We also discuss the analytical approach, the stochastic process models, which conceptualizes several aging-related mechanisms in the structure of the model and allows evaluating "hidden" characteristics of aging-related changes indirectly from available longitudinal data on biomarkers and follow-up on mortality or onset of diseases taking into account other relevant factors (both genetic and non-genetic). We also discuss an extension of the approach, which considers ranges of "optimal values" of biomarkers rather than a single optimal value as in the original model. We discuss practical applications of the approach to single biomarkers and cumulative measures highlighting that the potential of applications to cumulative measures is still largely underused.

摘要

当代纵向研究收集生物标志物的重复测量数据,使人们能够分析它们与死亡率、发病率或其他健康相关结果的动态关系。在此类研究中收集的丰富多样的数据提供了机会,来研究各种社会经济、人口统计学、行为及其他变量如何与生物和遗传因素相互作用,从而在个体中产生不同的衰老速率。在本文中,我们回顾了一些近期的出版物,这些出版物研究了生物标志物与死亡率相关的动态变化,它们使用单一生物标志物以及结合多个生物标志物信息的累积测量方法。我们还讨论了分析方法,即随机过程模型,该模型在模型结构中概念化了几种与衰老相关的机制,并允许从生物标志物的现有纵向数据以及考虑其他相关因素(遗传和非遗传)的死亡率或疾病发病随访中间接评估与衰老相关变化的“隐藏”特征。我们还讨论了该方法的扩展,它考虑的是生物标志物的“最佳值范围”,而不是原始模型中的单一最佳值。我们讨论了该方法在单一生物标志物和累积测量中的实际应用,强调了其在累积测量中的应用潜力仍在很大程度上未被充分利用。

相似文献

1
Dynamics of biomarkers in relation to aging and mortality.
Mech Ageing Dev. 2016 Jun;156:42-54. doi: 10.1016/j.mad.2016.04.010. Epub 2016 Apr 29.
2
Joint Analyses of Longitudinal and Time-to-Event Data in Research on Aging: Implications for Predicting Health and Survival.
Front Public Health. 2014 Nov 6;2:228. doi: 10.3389/fpubh.2014.00228. eCollection 2014.
4
Biomarker signatures of aging.
Aging Cell. 2017 Apr;16(2):329-338. doi: 10.1111/acel.12557. Epub 2017 Jan 6.
5
The use of information theory for the evaluation of biomarkers of aging and physiological age.
Mech Ageing Dev. 2017 Apr;163:23-29. doi: 10.1016/j.mad.2017.01.003. Epub 2017 Jan 12.
7
Stochastic model for analysis of longitudinal data on aging and mortality.
Math Biosci. 2007 Aug;208(2):538-51. doi: 10.1016/j.mbs.2006.11.006. Epub 2006 Dec 5.
8
MortalityPredictors.org: a manually-curated database of published biomarkers of human all-cause mortality.
Aging (Albany NY). 2017 Aug 31;9(8):1916-1925. doi: 10.18632/aging.101280.
10
Aging biomarkers and the brain.
Semin Cell Dev Biol. 2021 Aug;116:180-193. doi: 10.1016/j.semcdb.2021.01.003. Epub 2021 Jan 25.

引用本文的文献

5
A biological age model based on physical examination data to predict mortality in a Chinese population.
iScience. 2024 Feb 3;27(3):108891. doi: 10.1016/j.isci.2024.108891. eCollection 2024 Mar 15.
6
Progress in the study of aging marker criteria in human populations.
Front Public Health. 2024 Jan 24;12:1305303. doi: 10.3389/fpubh.2024.1305303. eCollection 2024.
8
Seven knowledge gaps in modern biogerontology.
Biogerontology. 2024 Feb;25(1):1-8. doi: 10.1007/s10522-023-10089-0.
10
Cardiovascular events and artificial intelligence-predicted age using 12-lead electrocardiograms.
Int J Cardiol Heart Vasc. 2023 Jan 6;44:101172. doi: 10.1016/j.ijcha.2023.101172. eCollection 2023 Feb.

本文引用的文献

1
Longitudinal Measurements of Cerebrospinal Fluid Biomarkers in Parkinson's Disease.
Mov Disord. 2016 Jun;31(6):898-905. doi: 10.1002/mds.26578. Epub 2016 Feb 16.
2
Optimal Versus Realized Trajectories of Physiological Dysregulation in Aging and Their Relation to Sex-Specific Mortality Risk.
Front Public Health. 2016 Jan 25;4:3. doi: 10.3389/fpubh.2016.00003. eCollection 2016.
3
Predicting all-cause mortality from basic physiology in the Framingham Heart Study.
Aging Cell. 2016 Feb;15(1):39-48. doi: 10.1111/acel.12408. Epub 2015 Oct 8.
4
Prediction of coronary artery disease risk based on multiple longitudinal biomarkers.
Stat Med. 2016 Apr 15;35(8):1299-314. doi: 10.1002/sim.6754. Epub 2015 Oct 5.
6
Puzzling role of genetic risk factors in human longevity: "risk alleles" as pro-longevity variants.
Biogerontology. 2016 Feb;17(1):109-27. doi: 10.1007/s10522-015-9600-1. Epub 2015 Aug 26.
9
Age-related frailty and its association with biological markers of ageing.
BMC Med. 2015 Jul 13;13:161. doi: 10.1186/s12916-015-0400-x.
10
Quantification of biological aging in young adults.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4104-10. doi: 10.1073/pnas.1506264112. Epub 2015 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验