Arbeev Konstantin G, Ukraintseva Svetlana V, Yashin Anatoliy I
Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, 2024 W. Main St., Room A102F, Box 90420, Durham, NC 27705, USA.
Biodemography of Aging Research Unit (BARU), Social Science Research Institute, Duke University, 2024 W. Main St., Room A102F, Box 90420, Durham, NC 27705, USA.
Mech Ageing Dev. 2016 Jun;156:42-54. doi: 10.1016/j.mad.2016.04.010. Epub 2016 Apr 29.
Contemporary longitudinal studies collect repeated measurements of biomarkers allowing one to analyze their dynamics in relation to mortality, morbidity, or other health-related outcomes. Rich and diverse data collected in such studies provide opportunities to investigate how various socio-economic, demographic, behavioral and other variables can interact with biological and genetic factors to produce differential rates of aging in individuals. In this paper, we review some recent publications investigating dynamics of biomarkers in relation to mortality, which use single biomarkers as well as cumulative measures combining information from multiple biomarkers. We also discuss the analytical approach, the stochastic process models, which conceptualizes several aging-related mechanisms in the structure of the model and allows evaluating "hidden" characteristics of aging-related changes indirectly from available longitudinal data on biomarkers and follow-up on mortality or onset of diseases taking into account other relevant factors (both genetic and non-genetic). We also discuss an extension of the approach, which considers ranges of "optimal values" of biomarkers rather than a single optimal value as in the original model. We discuss practical applications of the approach to single biomarkers and cumulative measures highlighting that the potential of applications to cumulative measures is still largely underused.
当代纵向研究收集生物标志物的重复测量数据,使人们能够分析它们与死亡率、发病率或其他健康相关结果的动态关系。在此类研究中收集的丰富多样的数据提供了机会,来研究各种社会经济、人口统计学、行为及其他变量如何与生物和遗传因素相互作用,从而在个体中产生不同的衰老速率。在本文中,我们回顾了一些近期的出版物,这些出版物研究了生物标志物与死亡率相关的动态变化,它们使用单一生物标志物以及结合多个生物标志物信息的累积测量方法。我们还讨论了分析方法,即随机过程模型,该模型在模型结构中概念化了几种与衰老相关的机制,并允许从生物标志物的现有纵向数据以及考虑其他相关因素(遗传和非遗传)的死亡率或疾病发病随访中间接评估与衰老相关变化的“隐藏”特征。我们还讨论了该方法的扩展,它考虑的是生物标志物的“最佳值范围”,而不是原始模型中的单一最佳值。我们讨论了该方法在单一生物标志物和累积测量中的实际应用,强调了其在累积测量中的应用潜力仍在很大程度上未被充分利用。