Suppr超能文献

一种针对灾难心理健康的新型监测方法。

A novel surveillance approach for disaster mental health.

作者信息

Gruebner Oliver, Lowe Sarah R, Sykora Martin, Shankardass Ketan, Subramanian S V, Galea Sandro

机构信息

Harvard T.H. Chan School of Public Health, Department of Social and Behavioral Sciences, Boston, MA, United States of America.

Montclair State University, Department of Psychology, Montclair, NJ, United States of America.

出版信息

PLoS One. 2017 Jul 19;12(7):e0181233. doi: 10.1371/journal.pone.0181233. eCollection 2017.

Abstract

BACKGROUND

Disasters have substantial consequences for population mental health. Social media data present an opportunity for mental health surveillance after disasters to help identify areas of mental health needs. We aimed to 1) identify specific basic emotions from Twitter for the greater New York City area during Hurricane Sandy, which made landfall on October 29, 2012, and to 2) detect and map spatial temporal clusters representing excess risk of these emotions.

METHODS

We applied an advanced sentiment analysis on 344,957 Twitter tweets in the study area over eleven days, from October 22 to November 1, 2012, to extract basic emotions, a space-time scan statistic (SaTScan) and a geographic information system (QGIS) to detect and map excess risk of these emotions.

RESULTS

Sadness and disgust were among the most prominent emotions identified. Furthermore, we noted 24 spatial clusters of excess risk of basic emotions over time: Four for anger, one for confusion, three for disgust, five for fear, five for sadness, and six for surprise. Of these, anger, confusion, disgust and fear clusters appeared pre disaster, a cluster of surprise was found peri disaster, and a cluster of sadness emerged post disaster.

CONCLUSIONS

We proposed a novel syndromic surveillance approach for mental health based on social media data that may support conventional approaches by providing useful additional information in the context of disaster. We showed that excess risk of multiple basic emotions could be mapped in space and time as a step towards anticipating acute stress in the population and identifying community mental health need rapidly and efficiently in the aftermath of disaster. More studies are needed to better control for bias, identify associations with reliable and valid instruments measuring mental health, and to explore computational methods for continued model-fitting, causal relationships, and ongoing evaluation. Our study may be a starting point also for more fully elaborated models that can either prospectively detect mental health risk using real-time social media data or detect excess risk of emotional reactions in areas that lack efficient infrastructure during and after disasters. As such, social media data may be used for mental health surveillance after large scale disasters to help identify areas of mental health needs and to guide us in our knowledge where we may most effectively intervene to reduce the mental health consequences of disasters.

摘要

背景

灾难对民众心理健康有重大影响。社交媒体数据为灾难后心理健康监测提供了契机,有助于确定心理健康需求领域。我们旨在:1)从2012年10月29日登陆的桑迪飓风期间纽约市大都市区的推特中识别特定的基本情绪;2)检测并绘制代表这些情绪过度风险的时空聚类图。

方法

我们对2012年10月22日至11月1日这11天内研究区域的344,957条推特推文应用了先进的情感分析,以提取基本情绪,运用时空扫描统计(SaTScan)和地理信息系统(QGIS)来检测并绘制这些情绪的过度风险图。

结果

悲伤和厌恶是识别出的最突出情绪。此外,我们发现随着时间推移有24个基本情绪过度风险的空间聚类:愤怒聚类4个、困惑聚类1个、厌恶聚类3个、恐惧聚类5个、悲伤聚类5个、惊讶聚类6个。其中,愤怒、困惑、厌恶和恐惧聚类出现在灾难前,1个惊讶聚类出现在灾难期间,1个悲伤聚类出现在灾难后。

结论

我们基于社交媒体数据提出了一种新的心理健康症状监测方法,该方法可通过在灾难背景下提供有用的额外信息来支持传统方法。我们表明,多种基本情绪的过度风险可在空间和时间上进行映射,这是朝着预测民众急性应激以及在灾难后快速有效地确定社区心理健康需求迈出的一步。需要更多研究来更好地控制偏差,确定与测量心理健康的可靠有效工具的关联,并探索用于持续模型拟合、因果关系和持续评估的计算方法。我们的研究也可能是更全面阐述模型的起点,这些模型既可以使用实时社交媒体数据前瞻性地检测心理健康风险,也可以在灾难期间和之后在缺乏有效基础设施的地区检测情绪反应的过度风险。因此,社交媒体数据可用于大规模灾难后的心理健康监测,以帮助确定心理健康需求领域,并指导我们了解在何处可以最有效地进行干预以减少灾难对心理健康的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae6/5516998/240852f6f0ad/pone.0181233.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验