Suppr超能文献

利用 Facebook 语言预测和描述过度饮酒行为。

Using Facebook language to predict and describe excessive alcohol use.

机构信息

Positive Psychology Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Computer Science, Stony Brook University, Stony Brook, New York, USA.

出版信息

Alcohol Clin Exp Res. 2022 May;46(5):836-847. doi: 10.1111/acer.14807. Epub 2022 May 16.

Abstract

BACKGROUND

Assessing risk for excessive alcohol use is important for applications ranging from recruitment into research studies to targeted public health messaging. Social media language provides an ecologically embedded source of information for assessing individuals who may be at risk for harmful drinking.

METHODS

Using data collected on 3664 respondents from the general population, we examine how accurately language used on social media classifies individuals as at-risk for alcohol problems based on Alcohol Use Disorder Identification Test-Consumption score benchmarks.

RESULTS

We find that social media language is moderately accurate (area under the curve = 0.75) at identifying individuals at risk for alcohol problems (i.e., hazardous drinking/alcohol use disorders) when used with models based on contextual word embeddings. High-risk alcohol use was predicted by individuals' usage of words related to alcohol, partying, informal expressions, swearing, and anger. Low-risk alcohol use was predicted by individuals' usage of social, affiliative, and faith-based words.

CONCLUSIONS

The use of social media data to study drinking behavior in the general public is promising and could eventually support primary and secondary prevention efforts among Americans whose at-risk drinking may have otherwise gone "under the radar."

摘要

背景

评估过度饮酒的风险对于从研究招募到有针对性的公共卫生信息传递等各种应用都很重要。社交媒体语言为评估可能有酗酒风险的个体提供了一个生态嵌入的信息来源。

方法

我们使用从普通人群中收集的 3664 名受访者的数据,研究了基于酒精使用障碍识别测试-消费得分基准,社交媒体语言在多大程度上能准确地将个体分类为有酒精问题风险。

结果

我们发现,当使用基于上下文单词嵌入的模型时,社交媒体语言在识别有酒精问题风险(即危险饮酒/酒精使用障碍)的个体时具有中等准确性(曲线下面积为 0.75)。个体使用与酒精、聚会、非正式表达、咒骂和愤怒相关的词语预示着高风险的酒精使用,而个体使用与社交、亲和和信仰相关的词语则预示着低风险的酒精使用。

结论

使用社交媒体数据来研究普通人群的饮酒行为是有前途的,最终可能会支持那些有风险的饮酒行为可能“未被发现”的美国人的一级和二级预防工作。

相似文献

1
Using Facebook language to predict and describe excessive alcohol use.利用 Facebook 语言预测和描述过度饮酒行为。
Alcohol Clin Exp Res. 2022 May;46(5):836-847. doi: 10.1111/acer.14807. Epub 2022 May 16.
4
Can Twitter be used to predict county excessive alcohol consumption rates?能否利用 Twitter 预测县(区)过度饮酒率?
PLoS One. 2018 Apr 4;13(4):e0194290. doi: 10.1371/journal.pone.0194290. eCollection 2018.
6
Cultural Differences in Tweeting about Drinking Across the US.中美两国推特用户关于饮酒行为的文化差异。
Int J Environ Res Public Health. 2020 Feb 11;17(4):1125. doi: 10.3390/ijerph17041125.
9
[Excessive alcohol consumption: what is the burden on natural caregivers?].[过度饮酒:对自然照顾者有何负担?]
Encephale. 2014 Apr;40 Suppl 1:S1-10. doi: 10.1016/j.encep.2014.02.007. Epub 2014 Mar 20.

引用本文的文献

4
GPT is an effective tool for multilingual psychological text analysis.GPT 是一种用于多语言心理文本分析的有效工具。
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2308950121. doi: 10.1073/pnas.2308950121. Epub 2024 Aug 12.

本文引用的文献

8
Facebook language predicts depression in medical records.脸书的语言可预测病历中的抑郁症状。
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11203-11208. doi: 10.1073/pnas.1802331115. Epub 2018 Oct 15.
9
Can Twitter be used to predict county excessive alcohol consumption rates?能否利用 Twitter 预测县(区)过度饮酒率?
PLoS One. 2018 Apr 4;13(4):e0194290. doi: 10.1371/journal.pone.0194290. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验