Suppr超能文献

核氧化还原蛋白通过保护抗氧化酶来抵御氧化应激。

Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes.

作者信息

Kneeshaw Sophie, Keyani Rumana, Delorme-Hinoux Valérie, Imrie Lisa, Loake Gary J, Le Bihan Thierry, Reichheld Jean-Philippe, Spoel Steven H

机构信息

School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South Institute of Information Technology, Islamabad 44000, Pakistan.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8414-8419. doi: 10.1073/pnas.1703344114. Epub 2017 Jul 19.

Abstract

Cellular accumulation of reactive oxygen species (ROS) is associated with a wide range of developmental and stress responses. Although cells have evolved to use ROS as signaling molecules, their chemically reactive nature also poses a threat. Antioxidant systems are required to detoxify ROS and prevent cellular damage, but little is known about how these systems manage to function in hostile, ROS-rich environments. Here we show that during oxidative stress in plant cells, the pathogen-inducible oxidoreductase Nucleoredoxin 1 (NRX1) targets enzymes of major hydrogen peroxide (HO)-scavenging pathways, including catalases. Mutant plants displayed reduced catalase activity and were hypersensitive to oxidative stress. Remarkably, catalase was maintained in a reduced state by substrate-interaction with NRX1, a process necessary for its HO-scavenging activity. These data suggest that unexpectedly HO-scavenging enzymes experience oxidative distress in ROS-rich environments and require reductive protection from NRX1 for optimal activity.

摘要

活性氧(ROS)的细胞积累与广泛的发育和应激反应相关。尽管细胞已进化到将ROS用作信号分子,但其化学反应性本质也构成了威胁。需要抗氧化系统来清除ROS并防止细胞损伤,但对于这些系统如何在充满ROS的恶劣环境中发挥作用却知之甚少。在这里,我们表明在植物细胞的氧化应激期间,病原体诱导的氧化还原酶核氧化还原蛋白1(NRX1)靶向主要过氧化氢(H₂O₂)清除途径的酶,包括过氧化氢酶。突变植物表现出降低的过氧化氢酶活性,并且对氧化应激高度敏感。值得注意的是,过氧化氢酶通过与NRX1的底物相互作用保持在还原状态,这是其H₂O₂清除活性所必需的过程。这些数据表明,出乎意料的是,H₂O₂清除酶在富含ROS的环境中会经历氧化应激,并且需要NRX1的还原保护以实现最佳活性。

相似文献

1
Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8414-8419. doi: 10.1073/pnas.1703344114. Epub 2017 Jul 19.
2
Nucleoredoxin 1 positively regulates heat stress tolerance by enhancing the transcription of antioxidants and heat-shock proteins in tomato.
Biochem Biophys Res Commun. 2022 Dec 20;635:12-18. doi: 10.1016/j.bbrc.2022.10.033. Epub 2022 Oct 10.
3
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.
5
Pancreatic β-cells detoxify HO through the peroxiredoxin/thioredoxin antioxidant system.
J Biol Chem. 2019 Mar 29;294(13):4843-4853. doi: 10.1074/jbc.RA118.006219. Epub 2019 Jan 18.
6
Antioxidants, oxidative damage and oxygen deprivation stress: a review.
Ann Bot. 2003 Jan;91 Spec No(2):179-94. doi: 10.1093/aob/mcf118.
7
Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
Rev Environ Contam Toxicol. 2014;232:1-44. doi: 10.1007/978-3-319-06746-9_1.
10
Plant responses to water stress: role of reactive oxygen species.
Plant Signal Behav. 2011 Nov;6(11):1741-5. doi: 10.4161/psb.6.11.17729. Epub 2011 Nov 1.

引用本文的文献

2
Redox-signaling in innate immune memory: Similar mechanisms in animals/humans and plants.
Redox Biol. 2025 Jul;84:103702. doi: 10.1016/j.redox.2025.103702. Epub 2025 May 27.
3
Exploring FKBP12's Role in Enhancing Drought Tolerance in Rice.
Rice (N Y). 2025 May 17;18(1):36. doi: 10.1186/s12284-025-00795-3.
4
Genome-wide identification of the nuclear redox protein gene family revealed its potential role in drought stress tolerance in rice.
Front Plant Sci. 2025 Apr 22;16:1562718. doi: 10.3389/fpls.2025.1562718. eCollection 2025.
6
Oxidative post-translational modifications of plant antioxidant systems under environmental stress.
Physiol Plant. 2025 Jan-Feb;177(1):e70118. doi: 10.1111/ppl.70118.

本文引用的文献

1
CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses.
Cell Host Microbe. 2017 Feb 8;21(2):143-155. doi: 10.1016/j.chom.2017.01.007.
3
Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.
Trends Biochem Sci. 2015 Aug;40(8):435-45. doi: 10.1016/j.tibs.2015.05.001. Epub 2015 Jun 9.
5
Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity.
Mol Cell. 2014 Oct 2;56(1):153-62. doi: 10.1016/j.molcel.2014.08.003. Epub 2014 Sep 4.
6
ROS function in redox signaling and oxidative stress.
Curr Biol. 2014 May 19;24(10):R453-62. doi: 10.1016/j.cub.2014.03.034.
7
NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells.
Mol Plant. 2014 Jan;7(1):30-44. doi: 10.1093/mp/sst162. Epub 2013 Nov 19.
8
PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein.
Traffic. 2014 Jan;15(1):94-103. doi: 10.1111/tra.12129. Epub 2013 Oct 31.
9
Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii.
Plant Cell Environ. 2013 Jun;36(6):1204-13. doi: 10.1111/pce.12053. Epub 2013 Jan 13.
10
Hydrogen peroxide-a central hub for information flow in plant cells.
AoB Plants. 2012;2012:pls014. doi: 10.1093/aobpla/pls014. Epub 2012 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验