Suppr超能文献

胰岛 β 细胞通过过氧化物酶/硫氧还蛋白抗氧化系统来解毒 HO。

Pancreatic β-cells detoxify HO through the peroxiredoxin/thioredoxin antioxidant system.

机构信息

From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.

From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

出版信息

J Biol Chem. 2019 Mar 29;294(13):4843-4853. doi: 10.1074/jbc.RA118.006219. Epub 2019 Jan 18.

Abstract

Oxidative stress is thought to promote pancreatic β-cell dysfunction and contribute to both type 1 and type 2 diabetes. Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, are mediators of oxidative stress that arise largely from electron leakage during oxidative phosphorylation. Reports that β-cells express low levels of antioxidant enzymes, including catalase and GSH peroxidases, have supported a model in which β-cells are ill-equipped to detoxify ROS. This hypothesis seems at odds with the essential role of β-cells in the control of metabolic homeostasis and organismal survival through exquisite coupling of oxidative phosphorylation, a prominent ROS-producing pathway, to insulin secretion. Using glucose oxidase to deliver HO continuously over time and Amplex Red to measure extracellular HO concentration, we found here that β-cells can remove micromolar levels of this oxidant. This detoxification pathway utilizes the peroxiredoxin/thioredoxin antioxidant system, as selective chemical inhibition or siRNA-mediated depletion of thioredoxin reductase sensitized β-cells to continuously generated HO In contrast, when delivered as a bolus, HO induced the DNA damage response, depleted cellular energy stores, and decreased β-cell viability independently of thioredoxin reductase inhibition. These findings show that β-cells have the capacity to detoxify micromolar levels of HO through a thioredoxin reductase-dependent mechanism and are not as sensitive to oxidative damage as previously thought.

摘要

氧化应激被认为会促进胰腺β细胞功能障碍,并导致 1 型和 2 型糖尿病的发生。活性氧(ROS),如超氧自由基和过氧化氢,是氧化应激的介质,主要来源于氧化磷酸化过程中的电子泄漏。有报道称,β细胞表达的抗氧化酶水平较低,包括过氧化氢酶和谷胱甘肽过氧化物酶,这支持了一种观点,即β细胞清除 ROS 的能力较弱。这一假说似乎与β细胞在代谢稳态和机体生存中的重要作用不一致,因为它通过氧化磷酸化(一种产生大量 ROS 的途径)与胰岛素分泌的精确偶联,来控制代谢稳态和机体生存。通过使用葡萄糖氧化酶持续递呈 HO 并使用 Amplex Red 测量细胞外 HO 浓度,我们发现β细胞可以去除毫摩尔级别的这种氧化剂。这种解毒途径利用了过氧化物酶/硫氧还蛋白抗氧化系统,因为选择性的化学抑制或硫氧还蛋白还原酶的 siRNA 耗竭使β细胞对持续产生的 HO 敏感。相比之下,当作为一个 bolus 递呈时,HO 会诱导 DNA 损伤反应,耗尽细胞能量储备,并降低β细胞活力,而与硫氧还蛋白还原酶抑制无关。这些发现表明,β细胞具有通过依赖于硫氧还蛋白还原酶的机制来清除毫摩尔级别的 HO 的能力,并且不像以前认为的那样对氧化损伤敏感。

相似文献

1
Pancreatic β-cells detoxify HO through the peroxiredoxin/thioredoxin antioxidant system.
J Biol Chem. 2019 Mar 29;294(13):4843-4853. doi: 10.1074/jbc.RA118.006219. Epub 2019 Jan 18.
2
Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite.
Am J Physiol Regul Integr Comp Physiol. 2020 May 1;318(5):R1004-R1013. doi: 10.1152/ajpregu.00011.2020. Epub 2020 Apr 15.
5
The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage.
Front Endocrinol (Lausanne). 2021 Sep 7;12:718235. doi: 10.3389/fendo.2021.718235. eCollection 2021.
6
Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
Redox Biol. 2014 Apr 24;2:667-72. doi: 10.1016/j.redox.2014.04.010. eCollection 2014.
7
Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide.
Free Radic Biol Med. 2015 Jan;78:42-55. doi: 10.1016/j.freeradbiomed.2014.10.508. Epub 2014 Oct 29.
8
Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system.
J Biol Chem. 2010 Sep 3;285(36):27850-8. doi: 10.1074/jbc.M110.101196. Epub 2010 Jun 17.
10
Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):514-25. doi: 10.1016/j.bbabio.2015.02.012. Epub 2015 Feb 19.

引用本文的文献

1
Mitochondrial-encoded peptide MOTS-c prevents pancreatic islet cell senescence to delay diabetes.
Exp Mol Med. 2025 Aug;57(8):1861-1877. doi: 10.1038/s12276-025-01521-1. Epub 2025 Aug 25.
2
Oxidative Stress and Endothelial Dysfunction: The Pathogenesis of Pediatric Hypertension.
Int J Mol Sci. 2025 Jun 3;26(11):5355. doi: 10.3390/ijms26115355.
4
Time dynamics of elevated glucose and beta-hydroxybutyrate on beta cell mitochondrial metabolism.
Islets. 2025 Dec;17(1):2503515. doi: 10.1080/19382014.2025.2503515. Epub 2025 May 19.
7
Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells.
Physiol Res. 2024 Aug 30;73(S1):S139-S152. doi: 10.33549/physiolres.935259. Epub 2024 Apr 22.
8
Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models.
Biology (Basel). 2024 Mar 12;13(3):180. doi: 10.3390/biology13030180.

本文引用的文献

1
A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation.
Nat Chem Biol. 2018 Feb;14(2):148-155. doi: 10.1038/nchembio.2536. Epub 2017 Dec 18.
3
Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.
Biochim Biophys Acta Gen Subj. 2017 Aug;1861(8):1929-1942. doi: 10.1016/j.bbagen.2017.05.013. Epub 2017 May 17.
4
A radical shift in perspective: mitochondria as regulators of reactive oxygen species.
J Exp Biol. 2017 Apr 1;220(Pt 7):1170-1180. doi: 10.1242/jeb.132142.
6
Nitric Oxide Suppresses β-Cell Apoptosis by Inhibiting the DNA Damage Response.
Mol Cell Biol. 2016 Jul 14;36(15):2067-77. doi: 10.1128/MCB.00262-16. Print 2016 Aug 1.
8
How the location of superoxide generation influences the β-cell response to nitric oxide.
J Biol Chem. 2015 Mar 20;290(12):7952-60. doi: 10.1074/jbc.M114.627869. Epub 2015 Feb 3.
9
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.
Nat Chem Biol. 2015 Jan;11(1):64-70. doi: 10.1038/nchembio.1695. Epub 2014 Nov 24.
10
Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.
J Biol Chem. 2014 Sep 26;289(39):26904-26913. doi: 10.1074/jbc.M114.568329. Epub 2014 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验