Suppr超能文献

将延迟力反馈表示为当前状态和延迟状态的组合。

Representing delayed force feedback as a combination of current and delayed states.

作者信息

Avraham Guy, Mawase Firas, Karniel Amir, Shmuelof Lior, Donchin Opher, Mussa-Ivaldi Ferdinando A, Nisky Ilana

机构信息

Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel;

Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

J Neurophysiol. 2017 Oct 1;118(4):2110-2131. doi: 10.1152/jn.00347.2017. Epub 2017 Jul 19.

Abstract

To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information.

摘要

为了适应取决于手部当前状态的确定性力扰动,会形成内部表征以捕捉所经历的力与运动之间的关系。然而,来自多种模态的信息传播速度不同,导致模态间延迟,这需要对这些内部表征进行补偿才能发展。为了了解大脑如何表征这些延迟,我们向参与者呈现了延迟的速度依赖力场,即提前70或100毫秒取决于手部速度的力。我们通过检查参与者为应对扰动而施加的力来探究这些延迟力的内部表征。研究结果表明,对于这两种延迟力,最佳的内部表征模型由延迟速度以及当前位置和速度组成。我们发现参与者最初依赖当前状态,但随着适应过程,延迟表征对适应的贡献增加。适应后,当要求参与者以更高速度进行他们之前未在延迟力场中体验过的运动时,他们施加的力与当前位置和速度以及延迟速度表征一致。这表明感觉运动系统使用当前和延迟状态信息来表征延迟力反馈,并且在推广到更快运动时会使用这种表征。大脑会补偿身体和环境中的力以控制运动,但鉴于信息传输和处理中固有的延迟,尚不清楚它是如何做到的。我们研究了参与者如何应对提前70或100毫秒取决于其手臂速度的延迟力。适应后,参与者施加的相反力表明他们使用当前和延迟信息对扰动有部分正确的表征。

相似文献

1
Representing delayed force feedback as a combination of current and delayed states.
J Neurophysiol. 2017 Oct 1;118(4):2110-2131. doi: 10.1152/jn.00347.2017. Epub 2017 Jul 19.
4
Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
Eur J Neurosci. 2013 Jul;38(1):2108-23. doi: 10.1111/ejn.12211. Epub 2013 May 22.
5
The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.
J Neurophysiol. 2017 Oct 1;118(4):2483-2498. doi: 10.1152/jn.00636.2016. Epub 2017 Aug 9.
6
Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
Brain Res Bull. 2006 Dec 11;71(1-3):101-10. doi: 10.1016/j.brainresbull.2006.08.007. Epub 2006 Sep 1.
8
Rapid visuomotor feedback gains are tuned to the task dynamics.
J Neurophysiol. 2017 Nov 1;118(5):2711-2726. doi: 10.1152/jn.00748.2016. Epub 2017 Aug 23.
9
Adaptation to delayed force perturbations in reaching movements.
PLoS One. 2010 Aug 11;5(8):e12128. doi: 10.1371/journal.pone.0012128.
10
Limb motion dictates how motor learning arises from arbitrary environmental dynamics.
J Neurophysiol. 2013 May;109(10):2466-82. doi: 10.1152/jn.00497.2011. Epub 2013 Jan 30.

引用本文的文献

1
A neurocognitive pathway for engineering artificial touch.
Sci Adv. 2024 Dec 20;10(51):eadq6290. doi: 10.1126/sciadv.adq6290. Epub 2024 Dec 18.
2
During haptic communication, the central nervous system compensates distinctly for delay and noise.
PLoS Comput Biol. 2024 Nov 6;20(11):e1012037. doi: 10.1371/journal.pcbi.1012037. eCollection 2024 Nov.
3
The effect of tactile augmentation on manipulation and grip force control during force-field adaptation.
J Neuroeng Rehabil. 2020 Feb 11;17(1):17. doi: 10.1186/s12984-020-0649-y.
4
Adaptation to Laterally Asymmetrical Visuomotor Delay Has an Effect on Action But Not on Perception.
Front Hum Neurosci. 2019 Sep 6;13:312. doi: 10.3389/fnhum.2019.00312. eCollection 2019.
5
Neglect-Like Effects on Drawing Symmetry Induced by Adaptation to a Laterally Asymmetric Visuomotor Delay.
Front Hum Neurosci. 2018 Aug 28;12:335. doi: 10.3389/fnhum.2018.00335. eCollection 2018.
6
State-Based Delay Representation and Its Transfer from a Game of Pong to Reaching and Tracking.
eNeuro. 2017 Dec 26;4(6). doi: 10.1523/ENEURO.0179-17.2017. eCollection 2017 Nov-Dec.
7
The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.
J Neurophysiol. 2017 Oct 1;118(4):2483-2498. doi: 10.1152/jn.00636.2016. Epub 2017 Aug 9.

本文引用的文献

1
A Regression and Boundary-Crossing-Based Model for the Perception of Delayed Stiffness.
IEEE Trans Haptics. 2008 Jul-Dec;1(2):73-82. doi: 10.1109/TOH.2008.17.
2
Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control.
J Neurosci. 2016 Oct 12;36(41):10545-10559. doi: 10.1523/JNEUROSCI.1178-16.2016.
3
Perception and Action in Teleoperated Needle Insertion.
IEEE Trans Haptics. 2011 May-Jun;4(3):155-66. doi: 10.1109/TOH.2011.30. Epub 2011 Jun 9.
5
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning.
J Neurosci. 2015 Jul 1;35(26):9568-79. doi: 10.1523/JNEUROSCI.5061-14.2015.
7
The gentle touch receptors of mammalian skin.
Science. 2014 Nov 21;346(6212):950-4. doi: 10.1126/science.1254229.
9
Environmental consistency determines the rate of motor adaptation.
Curr Biol. 2014 May 19;24(10):1050-61. doi: 10.1016/j.cub.2014.03.049. Epub 2014 May 1.
10
Explicit and implicit contributions to learning in a sensorimotor adaptation task.
J Neurosci. 2014 Feb 19;34(8):3023-32. doi: 10.1523/JNEUROSCI.3619-13.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验