State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
University of the Chinese Academy of Sciences, Beijing, 100049, China.
Sci Rep. 2017 Jul 19;7(1):5915. doi: 10.1038/s41598-017-06426-2.
Phase change memory (PCM) is a promising nonvolatile memory to reform current commercial computing system. Inhibiting face-centered cubic (f-) to hexagonal (h-) phase transition of GeSbTe (GST) thin film is essential for realizing high-density, high-speed, and low-power PCM. Although the atomic configurations of f- and h-lattices of GST alloy and the transition mechanisms have been extensively studied, the real transition process should be more complex than previous explanations, e.g. vacancy-ordering model for f-to-h transition. In this study, dynamic crystallization procedure of GST thin film was directly characterized by in situ heating transmission electron microscopy. We reveal that the equilibrium to h-phase is more like an abnormal grain growth process driven by surface energy anisotropy. More specifically, [0001]-oriented h-grains with the lowest surface energy grow much faster by consuming surrounding small grains, no matter what the crystallographic reconfigurations would be on the frontier grain-growth boundaries. We argue the widely accepted vacancy-ordering mechanism may not be indispensable for the large-scale f-to-h grain growth procedure. The real-time observations in this work contribute to a more comprehensive understanding of the crystallization behavior of GST thin film and can be essential for guiding its optimization to achieve high-performance PCM applications.
相变存储器(PCM)是一种很有前途的非易失性存储器,可用于改造当前的商业计算系统。抑制锗锑碲(GST)薄膜的面心立方(f-)到六方(h-)相转变对于实现高密度、高速和低功耗的 PCM 至关重要。尽管 GST 合金的 f-和 h-晶格的原子构型和转变机制已经得到了广泛的研究,但实际的转变过程应该比以前的解释更复杂,例如 f 到 h 转变的空位有序模型。在这项研究中,我们通过原位加热透射电子显微镜直接表征了 GST 薄膜的动态结晶过程。我们揭示了平衡到 h-相更像是一个由表面能各向异性驱动的异常晶粒生长过程。更具体地说,具有最低表面能的[0001]取向的 h-晶粒通过消耗周围的小晶粒而生长得更快,无论前沿晶粒生长边界上的晶体重构如何。我们认为,广泛接受的空位有序机制对于大规模的 f 到 h 晶粒生长过程可能不是必不可少的。这项工作中的实时观察有助于更全面地了解 GST 薄膜的结晶行为,并对其优化以实现高性能 PCM 应用具有重要意义。