Suppr超能文献

整合高度定量蛋白质组学和基因组规模代谢模型以研究人类病原体中的pH适应性

Integrating highly quantitative proteomics and genome-scale metabolic modeling to study pH adaptation in the human pathogen .

作者信息

Großeholz Ruth, Koh Ching-Chiek, Veith Nadine, Fiedler Tomas, Strauss Madlen, Olivier Brett, Collins Ben C, Schubert Olga T, Bergmann Frank, Kreikemeyer Bernd, Aebersold Ruedi, Kummer Ursula

机构信息

BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.

Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.

出版信息

NPJ Syst Biol Appl. 2016 Sep 8;2:16017. doi: 10.1038/npjsba.2016.17. eCollection 2016.

Abstract

Genome-scale metabolic models represent the entirety of metabolic reactions of an organism based on the annotation of the respective genome. These models commonly allow all reactions to proceed concurrently, disregarding the fact that at no point all proteins will be present in a cell. The metabolic reaction space can be constrained to a more physiological state using experimentally obtained information on enzyme abundances. However, high-quality, genome-wide protein measurements have been challenging and typically transcript abundances have been used as a surrogate for protein measurements. With recent developments in mass spectrometry-based proteomics, exemplified by SWATH-MS, the acquisition of highly quantitative proteome-wide data at reasonable throughput has come within reach. Here we present methodology to integrate such proteome-wide data into genome-scale models. We applied this methodology to study cellular changes in during adaptation to low pH. Our results indicate reduced proton production in the central metabolism and decreased membrane permeability for protons due to different membrane composition. We conclude that proteomic data constrain genome-scale models to a physiological state and, in return, genome-scale models are useful tools to contextualize proteomic data.

摘要

基因组尺度代谢模型基于相应基因组的注释来表示生物体代谢反应的整体情况。这些模型通常允许所有反应同时进行,而忽略了并非所有蛋白质都会同时存在于细胞中的事实。利用关于酶丰度的实验获得的信息,可以将代谢反应空间限制在更符合生理状态的范围内。然而,高质量的全基因组蛋白质测量一直具有挑战性,通常转录本丰度被用作蛋白质测量的替代指标。随着基于质谱的蛋白质组学的最新发展,以SWATH-MS为例,在合理通量下获取高度定量的全蛋白质组数据已成为可能。在此,我们提出了将此类全蛋白质组数据整合到基因组尺度模型中的方法。我们应用该方法研究了细胞在适应低pH过程中的变化。我们的结果表明,由于不同的膜组成,中心代谢中质子产生减少,质子的膜通透性降低。我们得出结论,蛋白质组学数据将基因组尺度模型限制在生理状态,反过来,基因组尺度模型是将蛋白质组学数据置于背景中的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab67/5516852/32ec35cefc98/npjsba201617-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验