Wright Addison V, Liu Jun-Jie, Knott Gavin J, Doxzen Kevin W, Nogales Eva, Doudna Jennifer A
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Science. 2017 Sep 15;357(6356):1113-1118. doi: 10.1126/science.aao0679. Epub 2017 Jul 20.
CRISPR-Cas systems depend on the Cas1-Cas2 integrase to capture and integrate short foreign DNA fragments into the CRISPR locus, enabling adaptation to new viruses. We present crystal structures of Cas1-Cas2 bound to both donor and target DNA in intermediate and product integration complexes, as well as a cryo-electron microscopy structure of the full CRISPR locus integration complex, including the accessory protein IHF (integration host factor). The structures show unexpectedly that indirect sequence recognition dictates integration site selection by favoring deformation of the repeat and the flanking sequences. IHF binding bends the DNA sharply, bringing an upstream recognition motif into contact with Cas1 to increase both the specificity and efficiency of integration. These results explain how the Cas1-Cas2 CRISPR integrase recognizes a sequence-dependent DNA structure to ensure site-selective CRISPR array expansion during the initial step of bacterial adaptive immunity.
CRISPR-Cas系统依靠Cas1-Cas2整合酶来捕获短的外源DNA片段并将其整合到CRISPR基因座中,从而实现对新病毒的适应性。我们展示了在中间和产物整合复合物中与供体和靶标DNA结合的Cas1-Cas2的晶体结构,以及完整CRISPR基因座整合复合物的冷冻电子显微镜结构,包括辅助蛋白IHF(整合宿主因子)。这些结构意外地表明,间接序列识别通过促进重复序列和侧翼序列的变形来决定整合位点的选择。IHF的结合使DNA急剧弯曲,使上游识别基序与Cas1接触,从而提高整合的特异性和效率。这些结果解释了Cas1-Cas2 CRISPR整合酶如何识别依赖序列的DNA结构,以确保在细菌适应性免疫的初始步骤中进行位点选择性的CRISPR阵列扩展。