Suppr超能文献

CRISPR基因组整合复合体的结构。

Structures of the CRISPR genome integration complex.

作者信息

Wright Addison V, Liu Jun-Jie, Knott Gavin J, Doxzen Kevin W, Nogales Eva, Doudna Jennifer A

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

出版信息

Science. 2017 Sep 15;357(6356):1113-1118. doi: 10.1126/science.aao0679. Epub 2017 Jul 20.

Abstract

CRISPR-Cas systems depend on the Cas1-Cas2 integrase to capture and integrate short foreign DNA fragments into the CRISPR locus, enabling adaptation to new viruses. We present crystal structures of Cas1-Cas2 bound to both donor and target DNA in intermediate and product integration complexes, as well as a cryo-electron microscopy structure of the full CRISPR locus integration complex, including the accessory protein IHF (integration host factor). The structures show unexpectedly that indirect sequence recognition dictates integration site selection by favoring deformation of the repeat and the flanking sequences. IHF binding bends the DNA sharply, bringing an upstream recognition motif into contact with Cas1 to increase both the specificity and efficiency of integration. These results explain how the Cas1-Cas2 CRISPR integrase recognizes a sequence-dependent DNA structure to ensure site-selective CRISPR array expansion during the initial step of bacterial adaptive immunity.

摘要

CRISPR-Cas系统依靠Cas1-Cas2整合酶来捕获短的外源DNA片段并将其整合到CRISPR基因座中,从而实现对新病毒的适应性。我们展示了在中间和产物整合复合物中与供体和靶标DNA结合的Cas1-Cas2的晶体结构,以及完整CRISPR基因座整合复合物的冷冻电子显微镜结构,包括辅助蛋白IHF(整合宿主因子)。这些结构意外地表明,间接序列识别通过促进重复序列和侧翼序列的变形来决定整合位点的选择。IHF的结合使DNA急剧弯曲,使上游识别基序与Cas1接触,从而提高整合的特异性和效率。这些结果解释了Cas1-Cas2 CRISPR整合酶如何识别依赖序列的DNA结构,以确保在细菌适应性免疫的初始步骤中进行位点选择性的CRISPR阵列扩展。

相似文献

1
Structures of the CRISPR genome integration complex.
Science. 2017 Sep 15;357(6356):1113-1118. doi: 10.1126/science.aao0679. Epub 2017 Jul 20.
3
How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
Nature. 2017 Oct 5;550(7674):137-141. doi: 10.1038/nature24020. Epub 2017 Sep 4.
4
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity.
Nat Struct Mol Biol. 2014 Jun;21(6):528-34. doi: 10.1038/nsmb.2820. Epub 2014 May 4.
5
CRISPR Immunological Memory Requires a Host Factor for Specificity.
Mol Cell. 2016 Jun 16;62(6):824-833. doi: 10.1016/j.molcel.2016.04.027. Epub 2016 May 19.
6
DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
Nucleic Acids Res. 2017 Mar 17;45(5):2714-2723. doi: 10.1093/nar/gkw1309.
7
Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.
Biochem J. 2016 Apr 15;473(8):1063-72. doi: 10.1042/BCJ20160078. Epub 2016 Feb 29.
8
A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System.
Mol Cell. 2019 Feb 21;73(4):727-737.e3. doi: 10.1016/j.molcel.2018.12.015. Epub 2019 Jan 29.
9
Foreign DNA capture during CRISPR-Cas adaptive immunity.
Nature. 2015 Nov 26;527(7579):535-8. doi: 10.1038/nature15760. Epub 2015 Oct 21.
10
Protecting genome integrity during CRISPR immune adaptation.
Nat Struct Mol Biol. 2016 Oct;23(10):876-883. doi: 10.1038/nsmb.3289. Epub 2016 Sep 5.

引用本文的文献

1
Discovery of CRISPR-Cas12a clades using a large language model.
Nat Commun. 2025 Aug 23;16(1):7877. doi: 10.1038/s41467-025-63160-4.
4
How and when organisms edit their own genomes.
Nat Genet. 2025 Jun 27. doi: 10.1038/s41588-025-02230-1.
6
SspA is a transcriptional regulator of CRISPR adaptation in E. coli.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkae1244.
7
Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system.
Nat Chem Biol. 2024 Nov;20(11):1471-1481. doi: 10.1038/s41589-024-01659-5. Epub 2024 Jul 8.
9
gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
Biomolecules. 2023 Nov 24;13(12):1698. doi: 10.3390/biom13121698.
10
Harnessing CRISPR-Cas adaptation for RNA recording and beyond.
BMB Rep. 2024 Jan;57(1):40-49. doi: 10.5483/BMBRep.2023-0050.

本文引用的文献

1
Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5122-E5128. doi: 10.1073/pnas.1618421114. Epub 2017 Jun 13.
2
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
Nat Methods. 2017 Apr;14(4):331-332. doi: 10.1038/nmeth.4193. Epub 2017 Feb 27.
3
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination.
Nat Methods. 2017 Mar;14(3):290-296. doi: 10.1038/nmeth.4169. Epub 2017 Feb 6.
4
DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
Nucleic Acids Res. 2017 Mar 17;45(5):2714-2723. doi: 10.1093/nar/gkw1309.
7
Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems.
Nucleic Acids Res. 2016 Dec 1;44(21):10367-10376. doi: 10.1093/nar/gkw821. Epub 2016 Sep 20.
8
Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array.
Cell Rep. 2016 Sep 13;16(11):2811-2818. doi: 10.1016/j.celrep.2016.08.043.
9
CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.
Mol Cell. 2016 Nov 3;64(3):616-623. doi: 10.1016/j.molcel.2016.08.038. Epub 2016 Sep 8.
10
Protecting genome integrity during CRISPR immune adaptation.
Nat Struct Mol Biol. 2016 Oct;23(10):876-883. doi: 10.1038/nsmb.3289. Epub 2016 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验