Suppr超能文献

为高频谐波光电量身定制的半导体。

Tailored semiconductors for high-harmonic optoelectronics.

机构信息

Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.

4th Physical Institute-Solids and Nanostructures, University of Göttingen, Göttingen, Germany.

出版信息

Science. 2017 Jul 21;357(6348):303-306. doi: 10.1126/science.aan2395.

Abstract

The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes.

摘要

30 年前,气体中的高次谐波产生奠定了阿秒科学的基础,并促进了原子、分子和固体中的超快光谱学。我们通过纳米结构和离子注入半导体来探索固态中的高次谐波产生。我们使用波长选择性微观成像来绘制增强的谐波发射图,并表明通过改变化学组成和形态,可以在固体中局部调整产生介质和驱动场。这使得可以在精确设计的固体靶中控制高次谐波技术。我们展示了定制的高次谐波波场,波长低至 225 纳米(2 微米激光脉冲的第九次谐波),并展示了硅中的集成菲涅耳波带板靶,这导致生成谐波的衍射极限自聚焦达到 1 微米的光斑尺寸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验