Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany.
European Theoretical Spectroscopy Facility (ETSF), Luruper Chaussee 149, 22761, Hamburg, Germany.
Nat Commun. 2017 Sep 29;8(1):745. doi: 10.1038/s41467-017-00764-5.
The strong ellipticity dependence of high-harmonic generation (HHG) in gases enables numerous experimental techniques that are nowadays routinely used, for instance, to create isolated attosecond pulses. Extending such techniques to solids requires a fundamental understanding of the microscopic mechanism of HHG. Here we use first-principles simulations within a time-dependent density-functional framework and show how intraband and interband mechanisms are strongly and differently affected by the ellipticity of the driving laser field. The complex interplay between intraband and interband effects can be used to tune and improve harmonic emission in solids. In particular, we show that the high-harmonic plateau can be extended by as much as 30% using a finite ellipticity of the driving field. We furthermore demonstrate the possibility to generate, from single circularly polarized drivers, circularly polarized harmonics. Our work shows that ellipticity provides an additional knob to experimentally optimize HHG in solids.The mechanisms of high-order harmonic generation in bulk system and dilute gas are different. Here the authors use first-principle methods to explore the ellipticity dependence and control of the HHG in periodic solids by involving the interband and intraband dynamics in Si and MgO.
在气体中,高次谐波产生(HHG)的强椭圆率依赖性使许多实验技术得以实现,例如,产生孤立的阿秒脉冲。将这些技术扩展到固体中需要对 HHG 的微观机制有基本的了解。在这里,我们使用基于时间相关密度泛函理论的第一性原理模拟,并展示了带内和带间机制如何受到驱动激光场椭圆率的强烈和不同的影响。带内和带间效应之间的复杂相互作用可用于调节和改善固体中的谐波发射。特别是,我们表明,通过使用驱动场的有限椭圆率,可以将高次谐波平台延长多达 30%。我们还证明了从单个圆偏振驱动中产生圆偏振谐波的可能性。我们的工作表明,椭圆率为在实验中优化固体中的 HHG 提供了一个额外的调节旋钮。在体系统和稀气体中,高阶谐波产生的机制是不同的。在这里,作者通过涉及 Si 和 MgO 中的带间和带内动力学,使用第一性原理方法来探索周期性固体中 HHG 的椭圆率依赖性和控制。