Suppr超能文献

通过类别流畅性任务表现期间的全头 EEG+fNIRS 解码人类的心理状态。

Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance.

机构信息

Engineering Department, Nottingham Trent University, Nottingham, United Kingdom.

出版信息

J Neural Eng. 2017 Dec;14(6):066003. doi: 10.1088/1741-2552/aa814b.

Abstract

OBJECTIVE

Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system's ability to decode mental states and compare it with its unimodal components.

APPROACH

We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data.

MAIN RESULTS

EEG+fNIRS's decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data.

SIGNIFICANCE

Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.

摘要

目的

头皮脑电图 (EEG) 和功能近红外光谱 (fNIRS) 的同步记录(我们称之为 EEG+fNIRS),有望比单一模态更准确,同时保持与 EEG 一样便捷。我们旨在量化混合系统解码心理状态的能力,并将其与单一模态组件进行比较。

方法

我们对进行类别流畅性测试的健康志愿者进行记录,并将机器学习技术应用于数据。

主要结果

EEG+fNIRS 的解码准确性高于其子系统,部分原因是混合数据提供了新型的神经血管特征。

意义

准确实用的解码方法的可用性可能对医学诊断、脑机接口设计和神经工效学具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验