Suppr超能文献

深度学习在混合 EEG-fNIRS 脑机接口中的应用:在运动想象分类中的应用。

Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.

机构信息

Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University, Chieti, Italy. Institute of Advanced Biomedical Technologies, 'G. d'Annunzio' University, Chieti, Italy.

出版信息

J Neural Eng. 2018 Jun;15(3):036028. doi: 10.1088/1741-2552/aaaf82. Epub 2018 Feb 15.

Abstract

OBJECTIVE

Brain-computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures.

APPROACH

We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers.

MAIN RESULTS

At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect.

SIGNIFICANCE

BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

摘要

目的

脑-机接口 (BCI) 是指将中枢神经系统与设备连接的过程。BCI 历史上是通过脑电图 (EEG) 来实现的。在过去的几年中,通过将 EEG 与其他神经影像学技术(如功能近红外光谱 (fNIRS))相结合,已经取得了令人鼓舞的结果。BCI 的一个关键步骤是从记录的信号特征中对大脑状态进行分类。深度人工神经网络 (DNN) 最近取得了前所未有的复杂分类结果。这些性能是通过增加计算能力、有效的学习算法、有价值的激活函数以及限制或反馈神经元连接来实现的。通过期望整体 BCI 性能有显著提高,我们研究了将 EEG 和 fNIRS 记录与最先进的深度学习过程相结合的能力。

方法

我们对 15 名受试者进行了有指导的左手和右手运动想象任务,分类响应时间固定为 1 秒,整个实验长度为 10 分钟。在多模态记录模式下,DNN 对左与右分类的准确性进行了估计,并与独立的 EEG 和 fNIRS 以及其他分类器进行了比较。

主要结果

在群组水平上,当考虑多模态记录和具有协同作用的 DNN 分类器时,我们获得了性能的显著提高。

意义

通过采用多模态记录,提供电和血液动力学脑活动信息,并结合先进的非线性深度学习分类程序,BCI 的性能可以得到显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验