Suppr超能文献

聚-γ-谷氨酸生产的遗传和代谢工程:当前进展、挑战和展望。

Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects.

机构信息

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Postal address: 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.

出版信息

World J Microbiol Biotechnol. 2022 Aug 28;38(11):208. doi: 10.1007/s11274-022-03390-6.

Abstract

Accompanied with the developments of gene editing and synthetic biology toolkits, various metabolic engineering strategies have been established for strain improvement to enhance the target metabolite production. Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer that mainly produced by Bacillus, and low-level yield hinders its application. To address this problem, numerous approaches have been conducted to increase γ-PGA yield. In this review, we focus on the genetic and metabolic engineering of microorganism for γ-PGA production, including strengthening raw materials utilization and precursor supply, enhancing γ-PGA synthetase gene cluster, transcription regulation engineering, cofactor regeneration, energy engineering and blocking the synthetic pathways of by-products. Meanwhile, to attain the γ-PGA with different configurations (D/L) and molecular weights, the expression of γ-PGA synthetase, glutamate racemase and γ-PGA hydrolase were respectively manipulated. In addition, except for Bacillus, metabolic engineering of other hosts for high-level production of γ-PGA was also reviewed in this article. Finally, the prospect of metabolic engineering of γ-PGA production strain was discussed regarding the recent progress, challenge, and trends in this field.

摘要

伴随着基因编辑和合成生物学工具包的发展,已经建立了各种代谢工程策略来进行菌株改良,以提高目标代谢产物的产量。聚-γ-谷氨酸(γ-PGA)是一种主要由芽孢杆菌产生的天然生物聚合物,但产量低阻碍了其应用。为了解决这个问题,已经进行了许多方法来提高γ-PGA 的产量。在这篇综述中,我们专注于微生物的遗传和代谢工程以生产 γ-PGA,包括加强原材料利用和前体供应、增强γ-PGA 合成酶基因簇、转录调控工程、辅因子再生、能量工程和阻断副产物的合成途径。同时,为了获得具有不同构型(D/L)和分子量的 γ-PGA,可以分别操纵 γ-PGA 合成酶、谷氨酸消旋酶和 γ-PGA 水解酶的表达。此外,除了芽孢杆菌,还综述了其他宿主的代谢工程以实现 γ-PGA 的高产。最后,本文还讨论了 γ-PGA 生产菌株的代谢工程的前景,包括该领域的最新进展、挑战和趋势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验