Suppr超能文献

功能化的 V 族二元薄膜中的非常规能带反转和本征量子自旋霍尔效应。

Unconventional band inversion and intrinsic quantum spin Hall effect in functionalized group-V binary films.

机构信息

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P.R. China.

School of Physics and Technology, University of Jinan, Jinan, Shandong, 250022, P.R. China.

出版信息

Sci Rep. 2017 Jul 21;7(1):6126. doi: 10.1038/s41598-017-05420-y.

Abstract

Adequately understanding band inversion mechanism, one of the significant representations of topological phase, has substantial implications for design and regulation of topological insulators (TIs). Here, by identifying an unconventional band inversion, we propose an intrinsic quantum spin Hall (QSH) effect in iodinated group-V binary (ABI) monolayers with a bulk gap as large as 0.409 eV, guaranteeing its viable application at room temperature. The nontrivial topological characters, which can be established by explicit demonstration of Z invariant and gapless helical edge states, are derived from the band inversion of antibonding states of p orbitals at the K point. Furthermore, the topological properties are tunable under strain engineering and external electric field, which supplies a route to manipulate the spin/charge conductance of edge states. These findings not only provide a new platform to better understand the underlying origin of QSH effect in functionalized group-V films, but also are highly desirable to design large-gap QSH insulators for practical applications in spintronics.

摘要

充分理解带反转机制,拓扑相的重要表现之一,对拓扑绝缘体(TI)的设计和调控具有重要意义。在这里,通过识别非常规的带反转,我们在碘化 Group-V 二元(ABI)单层中提出了内在的量子自旋霍尔(QSH)效应,其体带隙高达 0.409eV,保证了其在室温下的可行应用。非平凡的拓扑性质可以通过 Z 不变量和无带隙螺旋边缘态的显式证明来建立,这源于 K 点 p 轨道反键态的带反转。此外,拓扑性质可以通过应变工程和外电场进行调控,这为控制边缘态的自旋/电荷输运提供了一种途径。这些发现不仅为更好地理解功能化 Group-V 薄膜中 QSH 效应的内在起源提供了一个新的平台,而且还非常希望为实际应用于自旋电子学的大带隙 QSH 绝缘体的设计提供了一种途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71e0/5522398/414053e842bb/41598_2017_5420_Fig1_HTML.jpg

相似文献

3
Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films.
Nano Lett. 2015 Feb 11;15(2):1083-9. doi: 10.1021/nl504037u. Epub 2015 Jan 7.
4
Effect of Amidogen Functionalization on Quantum Spin Hall Effect in Bi/Sb(111) Films.
ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41443-41453. doi: 10.1021/acsami.7b13179. Epub 2017 Nov 15.
6
New Family of Quantum Spin Hall Insulators in Two-dimensional Transition-Metal Halide with Large Nontrivial Band Gaps.
Nano Lett. 2015 Dec 9;15(12):7867-72. doi: 10.1021/acs.nanolett.5b02617. Epub 2015 Nov 4.
8
Tunability of the Quantum Spin Hall Effect in Bi(110) Films: Effects of Electric Field and Strain Engineering.
ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21515-21523. doi: 10.1021/acsami.7b02818. Epub 2017 Jun 15.
10
Dumbbell stanane: a large-gap quantum spin hall insulator.
Phys Chem Chem Phys. 2015 Jul 7;17(25):16624-9. doi: 10.1039/c5cp00046g. Epub 2015 Jun 3.

本文引用的文献

8
Strain-driven band inversion and topological aspects in Antimonene.
Sci Rep. 2015 Nov 5;5:16108. doi: 10.1038/srep16108.
9
Quantum spin hall insulators in strain-modified arsenene.
Nanoscale. 2015 Dec 7;7(45):19152-9. doi: 10.1039/c5nr05006e. Epub 2015 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验