Suppr超能文献

靶向BCL-2蛋白家族的研究进展。

Progress in targeting the BCL-2 family of proteins.

作者信息

Garner Thomas P, Lopez Andrea, Reyna Denis E, Spitz Adam Z, Gavathiotis Evripidis

机构信息

Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Curr Opin Chem Biol. 2017 Aug;39:133-142. doi: 10.1016/j.cbpa.2017.06.014. Epub 2017 Aug 17.

Abstract

The network of protein-protein interactions among the BCL-2 protein family plays a critical role in regulating cellular commitment to mitochondrial apoptosis. Anti-apoptotic BCL-2 proteins are considered promising targets for drug discovery and exciting clinical progress has stimulated intense investigations in the broader family. Here, we discuss recent developments in small molecules targeting anti-apoptotic proteins and alternative approaches to targeting BCL-2 family interactions. These studies advance our understanding of the role of BCL-2 family proteins in physiology and disease, providing unique tools for dissecting these functions. The BCL-2 family of proteins is a prime example of targeting protein-protein interactions and further chemical biology approaches will increase opportunities for novel targeted therapies in cancer, autoimmune and aging-associated diseases.

摘要

BCL-2蛋白家族成员间的蛋白质-蛋白质相互作用网络在调节细胞发生线粒体凋亡的过程中起着关键作用。抗凋亡BCL-2蛋白被视为药物研发的理想靶点,令人振奋的临床进展激发了对这一更为广泛家族的深入研究。在此,我们讨论了靶向抗凋亡蛋白的小分子研究进展以及靶向BCL-2家族相互作用的其他方法。这些研究增进了我们对BCL-2家族蛋白在生理和疾病中作用的理解,为剖析这些功能提供了独特工具。BCL-2蛋白家族是靶向蛋白质-蛋白质相互作用的典型例子,进一步的化学生物学方法将为癌症、自身免疫性疾病和衰老相关疾病的新型靶向治疗带来更多机会。

相似文献

1
Progress in targeting the BCL-2 family of proteins.
Curr Opin Chem Biol. 2017 Aug;39:133-142. doi: 10.1016/j.cbpa.2017.06.014. Epub 2017 Aug 17.
2
New dimension in therapeutic targeting of BCL-2 family proteins.
Oncotarget. 2015 May 30;6(15):12862-71. doi: 10.18632/oncotarget.3868.
3
From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors.
Nat Rev Drug Discov. 2017 Apr;16(4):273-284. doi: 10.1038/nrd.2016.253. Epub 2017 Feb 17.
4
Targeting BCL-2 regulated apoptosis in cancer.
Open Biol. 2018 May;8(5). doi: 10.1098/rsob.180002.
5
Pro-apoptotic activity of BH3-only proteins and BH3 mimetics: from theory to potential cancer therapy.
Anticancer Agents Med Chem. 2012 Oct 1;12(8):966-81. doi: 10.2174/187152012802650084.
6
Noxa in rheumatic diseases: present understanding and future impact.
Rheumatology (Oxford). 2014 Sep;53(9):1539-46. doi: 10.1093/rheumatology/ket408. Epub 2013 Dec 17.
7
The chemical biology of apoptosis: Revisited after 17 years.
Eur J Med Chem. 2019 Sep 1;177:63-75. doi: 10.1016/j.ejmech.2019.05.019. Epub 2019 May 8.
9
B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy.
Int J Mol Sci. 2021 Sep 28;22(19):10442. doi: 10.3390/ijms221910442.
10
Targeting Bcl-2 for cancer therapy.
Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188569. doi: 10.1016/j.bbcan.2021.188569. Epub 2021 May 18.

引用本文的文献

1
Novel Cyanopyrimidine Derivatives as Potential Anticancer Agents.
Molecules. 2025 Mar 25;30(7):1453. doi: 10.3390/molecules30071453.
5
Renal Protective Effect of Umbelliferone on Acute Kidney Injury in Rats via Alteration of HO-1/Nrf2 and NF-κB Signaling Pathway.
Dokl Biochem Biophys. 2024 Oct;518(1):442-451. doi: 10.1134/S160767292460043X. Epub 2024 Aug 28.
7
Protective Effect of Fermented Sea Tangle Extract on Skin Cell Damage Caused by Particulate Matter.
Int J Med Sci. 2024 Mar 31;21(5):937-948. doi: 10.7150/ijms.93034. eCollection 2024.
8
The Secondary Metabolites of Bacillus subtilis Strain Z15 Induce Apoptosis in Hepatocellular Carcinoma Cells.
Probiotics Antimicrob Proteins. 2025 Apr;17(2):832-842. doi: 10.1007/s12602-023-10181-4. Epub 2023 Oct 31.
9
Anti-proliferative activity of nitroquinolone fused acylhydrazones as non-small cell human lung cancer agents.
RSC Med Chem. 2023 May 17;14(7):1331-1343. doi: 10.1039/d3md00165b. eCollection 2023 Jul 20.
10
MDM2-BCL-X PROTACs enable degradation of BCL-X and stabilization of p53.
Acta Mater Med. 2022 Jul 21;1(3):333-342. doi: 10.15212/amm-2022-0022. Epub 2022 Aug 30.

本文引用的文献

2
Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors.
FEBS Lett. 2017 Jan;591(1):240-251. doi: 10.1002/1873-3468.12497. Epub 2016 Dec 19.
4
The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models.
Nature. 2016 Oct 27;538(7626):477-482. doi: 10.1038/nature19830. Epub 2016 Oct 19.
5
Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules.
J Med Chem. 2017 Feb 9;60(3):821-838. doi: 10.1021/acs.jmedchem.5b01888. Epub 2016 Dec 13.
6
Deactivation of Mcl-1 by Dual-Function Small-Molecule Inhibitors Targeting the Bcl-2 Homology 3 Domain and Facilitating Mcl-1 Ubiquitination.
Angew Chem Int Ed Engl. 2016 Nov 7;55(46):14250-14256. doi: 10.1002/anie.201606543. Epub 2016 Oct 4.
7
Selective Covalent Targeting of Anti-Apoptotic BFL-1 by Cysteine-Reactive Stapled Peptide Inhibitors.
Cell Chem Biol. 2016 Sep 22;23(9):1123-1134. doi: 10.1016/j.chembiol.2016.07.022. Epub 2016 Sep 8.
8
Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain.
Nat Chem Biol. 2016 Nov;12(11):931-936. doi: 10.1038/nchembio.2174. Epub 2016 Sep 5.
9
Physiological and Pharmacological Control of BAK, BAX, and Beyond.
Trends Cell Biol. 2016 Dec;26(12):906-917. doi: 10.1016/j.tcb.2016.07.002. Epub 2016 Aug 4.
10
An Autoinhibited Dimeric Form of BAX Regulates the BAX Activation Pathway.
Mol Cell. 2016 Aug 4;63(3):485-97. doi: 10.1016/j.molcel.2016.06.010. Epub 2016 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验