Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.
Neuroimage. 2019 Aug 15;197:761-771. doi: 10.1016/j.neuroimage.2017.07.040. Epub 2017 Jul 20.
The rapid developments in functional MRI (fMRI) acquisition methods and hardware technologies in recent years, particularly at high field (≥7 T), have enabled unparalleled visualization of functional detail at a laminar or columnar level, bringing fMRI close to the intrinsic resolution of brain function. These advances highlight the potential of high resolution fMRI to be a valuable tool to study the fundamental processing performed in cortical micro-circuits, and their interactions such as feedforward and feedback processes. Notably, because fMRI measures neuronal activity via hemodynamics, the ultimate resolution it affords depends on the spatial specificity of hemodynamics to neuronal activity at a detailed spatial scale, and by the evolution of this specificity over time. Several laminar (≤1 mm spatial resolution) fMRI studies have examined spatial characteristics of the measured hemodynamic signals across cortical depth, in light of understanding or improving the spatial specificity of laminar fMRI. Few studies have examined temporal features of the hemodynamic response across cortical depth. Temporal features of the hemodynamic response offer an additional means to improve the specificity of fMRI, and could help target neuronal processes and neurovascular coupling relationships across laminae, for example by differences in the onset times of the response across cortical depth. In this review, we discuss factors that affect the timing of neuronal and hemodynamic responses across laminae, touching on the neuronal laminar organization, and focusing on the laminar vascular organization. We provide an overview of hemodynamics across the cortical vascular tree based on optical imaging studies, and review temporal aspects of hemodynamics that have been examined across cortical depth in high spatiotemporal resolution fMRI studies. Last, we discuss the limits and potential of high spatiotemporal resolution fMRI to study laminar neurovascular coupling and neuronal processes.
近年来,功能磁共振成像(fMRI)采集方法和硬件技术的快速发展,尤其是在高磁场(≥7T)下,使得在层状或柱状水平上对功能细节进行无与伦比的可视化成为可能,使 fMRI 接近大脑功能的固有分辨率。这些进展突出了高分辨率 fMRI 的潜力,使其成为研究皮质微电路中基本处理以及它们之间相互作用(如前馈和反馈过程)的有价值工具。值得注意的是,由于 fMRI 通过血液动力学来测量神经元活动,因此它提供的最终分辨率取决于血液动力学在详细空间尺度上对神经元活动的空间特异性,以及这种特异性随时间的演变。一些(≤1 毫米空间分辨率)的层状 fMRI 研究已经根据理解或提高层状 fMRI 的空间特异性,检查了跨皮质深度的测量血液动力学信号的空间特征。很少有研究检查过跨皮质深度的血液动力学响应的时间特征。血液动力学响应的时间特征提供了提高 fMRI 特异性的另一种手段,并且可以帮助靶向跨层的神经元过程和神经血管耦合关系,例如通过响应在皮质深度上的起始时间的差异。在这篇综述中,我们讨论了影响跨层神经元和血液动力学响应时间的因素,涉及神经元的层状组织,并侧重于层状血管组织。我们根据光学成像研究提供了关于皮质血管树内血液动力学的概述,并综述了在高时空分辨率 fMRI 研究中跨皮质深度检查的血液动力学的时间方面。最后,我们讨论了高时空分辨率 fMRI 研究层状神经血管耦合和神经元过程的局限性和潜力。