Suppr超能文献

基于莫西沙星的双光子/相干反斯托克斯拉曼散射联合显微镜增强脑肿瘤轮廓描绘。

Brain tumor delineation enhanced by moxifloxacin-based two-photon/CARS combined microscopy.

作者信息

Le Viet-Hoan, Yoo Su Woong, Yoon Yeoreum, Wang Taejun, Kim Bumju, Lee Seunghun, Lee Kyung-Hwa, Kim Ki Hean, Chung Euiheon

机构信息

Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.

Co-first authors with equal contribution.

出版信息

Biomed Opt Express. 2017 Mar 9;8(4):2148-2161. doi: 10.1364/BOE.8.002148. eCollection 2017 Apr 1.

Abstract

Delineating brain tumor margin is critical for maximizing tumor removal while sparing adjacent normal tissue for better clinical outcome. We describe the use of moxifloxacin-based two-photon (TP)/coherent anti-Stokes Raman scattering (CARS) combined microscopy for differentiating normal mouse brain tissue from metastatic brain tumor tissue based on histoarchitectural and biochemical differences. Moxifloxacin, an FDA-approved compound, was used to label cells in the brain, and moxifloxacin-based two-photon microscopy (TPM) revealed tumor lesions with significantly high cellular density and invading edges in a metastatic brain tumor model. Besides, label-free CARS microscopy showed diminishing of lipid signal due to the destruction of myelin at the tumor site compared to a normal brain tissue site resulting in a complementary contrast for tumor detection. This study demonstrates that moxifloxacin-based TP/CARS combined microscopy might be advantageous for tumor margin identification in the brain that has been a long-standing challenge in the operating room.

摘要

描绘脑肿瘤边缘对于在保留相邻正常组织以获得更好临床结果的同时最大限度地切除肿瘤至关重要。我们描述了基于莫西沙星的双光子(TP)/相干反斯托克斯拉曼散射(CARS)联合显微镜技术,该技术基于组织结构和生化差异,用于区分正常小鼠脑组织和转移性脑肿瘤组织。莫西沙星是一种经美国食品药品监督管理局(FDA)批准的化合物,用于标记脑中的细胞,基于莫西沙星的双光子显微镜(TPM)在转移性脑肿瘤模型中揭示了具有显著高细胞密度和侵袭边缘的肿瘤病变。此外,无标记的CARS显微镜显示,与正常脑组织部位相比,肿瘤部位的髓磷脂破坏导致脂质信号减弱,从而为肿瘤检测提供了互补的对比度。这项研究表明,基于莫西沙星的TP/CARS联合显微镜技术可能有利于识别脑肿瘤边缘,这一直是手术室中长期存在的挑战。

相似文献

1
Brain tumor delineation enhanced by moxifloxacin-based two-photon/CARS combined microscopy.
Biomed Opt Express. 2017 Mar 9;8(4):2148-2161. doi: 10.1364/BOE.8.002148. eCollection 2017 Apr 1.
3
Two-photon microscopy of fungal keratitis-affected rabbit cornea ex vivo using moxifloxacin as a labeling agent.
Exp Eye Res. 2018 Sep;174:51-58. doi: 10.1016/j.exer.2018.05.018. Epub 2018 May 19.
6
Fast and sensitive delineation of brain tumor with clinically compatible moxifloxacin labeling and confocal microscopy.
J Biophotonics. 2020 Jan;13(1):e201900197. doi: 10.1002/jbio.201900197. Epub 2019 Aug 18.
7
Applications of coherent Raman scattering microscopies to clinical and biological studies.
Analyst. 2015 Jun 21;140(12):3897-909. doi: 10.1039/c5an00178a. Epub 2015 Mar 26.
8
Clinically Compatible Fluorescence Microscopy Based on Moxifloxacin Antibiotic.
Adv Exp Med Biol. 2021;1310:91-113. doi: 10.1007/978-981-33-6064-8_5.
9
Six-wave mixing coherent anti-Stokes Raman scattering microscopy.
Biomed Opt Express. 2018 Apr 27;9(5):2407-2417. doi: 10.1364/BOE.9.002407. eCollection 2018 May 1.

引用本文的文献

1
Rapid and label-free detection of COVID-19 using coherent anti-Stokes Raman scattering microscopy.
MRS Commun. 2020;10(4):566-572. doi: 10.1557/mrc.2020.81. Epub 2020 Dec 24.
2
Frontiers in Intravital Multiphoton Microscopy of Cancer.
Cancer Rep (Hoboken). 2020 Feb;3(1):e1192. doi: 10.1002/cnr2.1192. Epub 2019 Jun 20.
3
High-speed combined reflectance confocal and moxifloxacin based two-photon microscopy.
Biomed Opt Express. 2020 Feb 21;11(3):1555-1567. doi: 10.1364/BOE.385763. eCollection 2020 Mar 1.
4
Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications.
Biomed Eng Lett. 2019 Jul 1;9(3):293-310. doi: 10.1007/s13534-019-00119-7. eCollection 2019 Aug.
5
Imaging the aged brain: pertinence and methods.
Quant Imaging Med Surg. 2019 May;9(5):842-857. doi: 10.21037/qims.2019.05.06.
6
Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.
Theranostics. 2019 Apr 13;9(9):2541-2554. doi: 10.7150/thno.32655. eCollection 2019.
7
Applications of Raman spectroscopy in cancer diagnosis.
Cancer Metastasis Rev. 2018 Dec;37(4):691-717. doi: 10.1007/s10555-018-9770-9.
8
Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden.
Theranostics. 2018 Jul 16;8(15):4072-4085. doi: 10.7150/thno.25357. eCollection 2018.

本文引用的文献

1
Brain shift in neuronavigation of brain tumors: A review.
Med Image Anal. 2017 Jan;35:403-420. doi: 10.1016/j.media.2016.08.007. Epub 2016 Aug 24.
2
Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging.
Sci Rep. 2016 Jun 10;6:27142. doi: 10.1038/srep27142.
4
Optical technologies for intraoperative neurosurgical guidance.
Neurosurg Focus. 2016 Mar;40(3):E8. doi: 10.3171/2015.12.FOCUS15550.
5
Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.
Sci Transl Med. 2015 Oct 14;7(309):309ra163. doi: 10.1126/scitranslmed.aab0195.
6
Fluorescein in brain metastasis and glioma surgery.
Acta Neurochir (Wien). 2015 Dec;157(12):2199-200. doi: 10.1007/s00701-015-2576-4. Epub 2015 Sep 18.
7
Moxifloxacin Induced Seizures -A Case Report.
Iran J Public Health. 2014 Sep;43(9):1291-4.
8
Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography.
Sci Transl Med. 2015 Jun 17;7(292):292ra100. doi: 10.1126/scitranslmed.3010611.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验