Suppr超能文献

基于深度学习的受激拉曼散射显微镜快速检测喉鳞状细胞癌。

Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.

机构信息

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.

Human Phenome Institute, Multiscale Research Institute of Complex Systems, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.

出版信息

Theranostics. 2019 Apr 13;9(9):2541-2554. doi: 10.7150/thno.32655. eCollection 2019.

Abstract

Maximal resection of tumor while preserving the adjacent healthy tissue is particularly important for larynx surgery, hence precise and rapid intraoperative histology of laryngeal tissue is crucial for providing optimal surgical outcomes. We hypothesized that deep-learning based stimulated Raman scattering (SRS) microscopy could provide automated and accurate diagnosis of laryngeal squamous cell carcinoma on fresh, unprocessed surgical specimens without fixation, sectioning or staining. : We first compared 80 pairs of adjacent frozen sections imaged with SRS and standard hematoxylin and eosin histology to evaluate their concordance. We then applied SRS imaging on fresh surgical tissues from 45 patients to reveal key diagnostic features, based on which we have constructed a deep learning based model to generate automated histologic results. 18,750 SRS fields of views were used to train and cross-validate our 34-layered residual convolutional neural network, which was used to classify 33 untrained fresh larynx surgical samples into normal and neoplasia. Furthermore, we simulated intraoperative evaluation of resection margins on totally removed larynxes. : We demonstrated near-perfect diagnostic concordance (Cohen's kappa, κ > 0.90) between SRS and standard histology as evaluated by three pathologists. And deep-learning based SRS correctly classified 33 independent surgical specimens with 100% accuracy. We also demonstrated that our method could identify tissue neoplasia at the simulated resection margins that appear grossly normal with naked eyes. : Our results indicated that SRS histology integrated with deep learning algorithm provides potential for delivering rapid intraoperative diagnosis that could aid the surgical management of laryngeal cancer.

摘要

在喉癌手术中,最大限度地切除肿瘤同时保留相邻的健康组织尤为重要,因此,对喉组织进行精确、快速的术中组织学检查对于提供最佳手术效果至关重要。我们假设基于深度学习的受激拉曼散射(SRS)显微镜可以在未经固定、切片或染色的新鲜未加工手术标本上提供喉鳞状细胞癌的自动和准确诊断。我们首先比较了 80 对 SRS 和标准苏木精和伊红组织学成像的冷冻切片,以评估它们的一致性。然后,我们应用 SRS 成像对 45 名患者的新鲜手术组织进行成像,以揭示关键的诊断特征,基于这些特征,我们构建了一个基于深度学习的模型,以生成自动的组织学结果。我们使用 18750 个 SRS 视场来训练和交叉验证我们的 34 层残差卷积神经网络,该网络用于将 33 个未经训练的新鲜喉手术样本分为正常和肿瘤。此外,我们模拟了在完全切除的喉部上评估切除边缘的术中评估。我们证明了 SRS 和标准组织学之间的诊断一致性非常接近(三位病理学家评估的 Cohen's kappa,κ>0.90)。基于深度学习的 SRS 正确分类了 33 个独立的手术标本,准确率为 100%。我们还证明了我们的方法可以识别在肉眼看起来大体正常的模拟切除边缘的组织肿瘤。我们的结果表明,与深度学习算法集成的 SRS 组织学提供了快速术中诊断的潜力,可辅助喉癌的手术管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e1/6526002/35ba9a575d9d/thnov09p2541g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验