Suppr超能文献

通过解剖学光学相干断层扫描测量气道顺应性。

Airway compliance measured by anatomic optical coherence tomography.

作者信息

Bu Ruofei, Balakrishnan Santosh, Iftimia Nicusor, Price Hillel, Zdanski Carlton, Oldenburg Amy L

机构信息

Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216, USA.

Physical Sciences Inc., New England Business Center, Andover, MA 01810, USA.

出版信息

Biomed Opt Express. 2017 Mar 15;8(4):2195-2209. doi: 10.1364/BOE.8.002195. eCollection 2017 Apr 1.

Abstract

Quantification of airway compliance can aid in the diagnosis and treatment of obstructive airway disorders by detecting regions vulnerable to collapse. Here we evaluate the ability of a swept-source anatomic optical coherence tomography (SSaOCT) system to quantify airway cross-sectional compliance (CC) by measuring changes in the luminal cross-sectional area (CSA) under physiologically relevant pressures of 10-40 cmHO. The accuracy and precision of CC measurements are determined using simulations of non-uniform rotation distortion (NURD) endemic to endoscopic scanning, and experiments performed in a simplified tube phantom and porcine tracheas. NURD simulations show that CC measurements are typically more accurate than that of the CSAs from which they are derived. Phantom measurements of CSA versus pressure exhibit high linearity (>0.99), validating the dynamic range of the SSaOCT system. Tracheas also exhibited high linearity ( = 0.98) suggestive of linear elasticity, while CC measurements were obtained with typically ± 12% standard error.

摘要

气道顺应性的量化可通过检测易塌陷区域来辅助阻塞性气道疾病的诊断和治疗。在此,我们评估扫频源解剖光学相干断层扫描(SSaOCT)系统通过测量在10 - 40 cmH₂O生理相关压力下管腔横截面积(CSA)的变化来量化气道横截面顺应性(CC)的能力。使用针对内镜扫描特有的非均匀旋转畸变(NURD)模拟以及在简化管模型和猪气管中进行的实验来确定CC测量的准确性和精密度。NURD模拟表明,CC测量通常比其衍生的CSA测量更准确。CSA与压力的模型测量显示出高线性度(>0.99),验证了SSaOCT系统的动态范围。气管也表现出高线性度(r = 0.98),提示线性弹性,而CC测量的标准误差通常为±12%。

相似文献

1
Airway compliance measured by anatomic optical coherence tomography.
Biomed Opt Express. 2017 Mar 15;8(4):2195-2209. doi: 10.1364/BOE.8.002195. eCollection 2017 Apr 1.
2
Swept-Source Anatomic Optical Coherence Elastography of Porcine Trachea.
Proc SPIE Int Soc Opt Eng. 2016;9689. doi: 10.1117/12.2213186.
4
Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography.
Biomed Opt Express. 2014 Feb 19;5(3):788-99. doi: 10.1364/BOE.5.000788. eCollection 2014 Mar 1.
5
Localized compliance measurement of the airway wall using anatomic optical coherence elastography.
Opt Express. 2019 Jun 10;27(12):16751-16766. doi: 10.1364/OE.27.016751.
6
Sensing Inhalation Injury-Associated Changes in Airway Wall Compliance by Anatomic Optical Coherence Elastography.
IEEE Trans Biomed Eng. 2021 Aug;68(8):2360-2367. doi: 10.1109/TBME.2020.3037288. Epub 2021 Jul 16.
7
Multi-modal anatomical Optical Coherence Tomography and CT for Dynamic Upper Airway Imaging.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10039. doi: 10.1117/12.2250348.
8
Quantitative upper airway imaging with anatomic optical coherence tomography.
Am J Respir Crit Care Med. 2006 Jan 15;173(2):226-33. doi: 10.1164/rccm.200507-1148OC. Epub 2005 Oct 20.
9
Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography.
Eur Respir J. 2010 Jan;35(1):34-41. doi: 10.1183/09031936.00041809. Epub 2009 Jun 18.
10
Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography.
Am J Respir Crit Care Med. 2011 Mar 1;183(5):612-9. doi: 10.1164/rccm.201002-0178OC. Epub 2010 Sep 17.

引用本文的文献

1
Method for retrospective, respiratory-gated, anatomical optical coherence tomography for airway wall elastography.
J Biomed Opt. 2025 Dec;30(12):124502. doi: 10.1117/1.JBO.30.12.124502. Epub 2025 Aug 5.
2
assessment of airway wall compliance during inhalation injury response using anatomical optical coherence elastography.
J Biomed Opt. 2025 Jul;30(7):076001. doi: 10.1117/1.JBO.30.7.076001. Epub 2025 Jul 3.
3
Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited].
Biomed Opt Express. 2022 Dec 16;14(1):208-248. doi: 10.1364/BOE.468932. eCollection 2023 Jan 1.
4
Graph-based rotational nonuniformity correction for localized compliance measurement in the human nasopharynx.
Biomed Opt Express. 2021 Mar 30;12(4):2508-2518. doi: 10.1364/BOE.419997. eCollection 2021 Apr 1.
5
Sensing Inhalation Injury-Associated Changes in Airway Wall Compliance by Anatomic Optical Coherence Elastography.
IEEE Trans Biomed Eng. 2021 Aug;68(8):2360-2367. doi: 10.1109/TBME.2020.3037288. Epub 2021 Jul 16.
6
Utility of endoscopic anatomical optical coherence tomography in functional rhinoplasty.
J Biomed Opt. 2020 Jan;25(1):1-11. doi: 10.1117/1.JBO.25.1.016001.
7
Endoscopic Optical Coherence Tomography for Assessing Inhalation Airway Injury: A Technical Review.
Otolaryngol (Sunnyvale). 2019;9(2). doi: 10.4172/2161-119X.1000366. Epub 2019 Apr 4.
8
Localized compliance measurement of the airway wall using anatomic optical coherence elastography.
Opt Express. 2019 Jun 10;27(12):16751-16766. doi: 10.1364/OE.27.016751.
9
Geometric Validation of Continuous, Finely Sampled 3-D Reconstructions From aOCT and CT in Upper Airway Models.
IEEE Trans Med Imaging. 2019 Apr;38(4):1005-1015. doi: 10.1109/TMI.2018.2876625. Epub 2018 Oct 17.

本文引用的文献

1
Swept-Source Anatomic Optical Coherence Elastography of Porcine Trachea.
Proc SPIE Int Soc Opt Eng. 2016;9689. doi: 10.1117/12.2213186.
2
Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography.
Ann Otol Rhinol Laryngol. 2016 Oct;125(10):815-22. doi: 10.1177/0003489416655353. Epub 2016 Jun 28.
4
Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography.
Biomed Opt Express. 2014 Feb 19;5(3):788-99. doi: 10.1364/BOE.5.000788. eCollection 2014 Mar 1.
5
Effect of the velopharynx on intraluminal pressures in reconstructed pharynges derived from individuals with and without sleep apnea.
J Biomech. 2013 Sep 27;46(14):2504-12. doi: 10.1016/j.jbiomech.2013.07.007. Epub 2013 Aug 5.
6
Mechanical properties of the upper airway.
Compr Physiol. 2012 Jul;2(3):1853-72. doi: 10.1002/cphy.c110053.
7
High-speed upper-airway imaging using full-range optical coherence tomography.
J Biomed Opt. 2012 Nov;17(11):110507. doi: 10.1117/1.jbo.17.11.110507.
8
Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics.
J Appl Physiol (1985). 2011 Dec;111(6):1819-27. doi: 10.1152/japplphysiol.01230.2010. Epub 2011 Aug 18.
10
Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography.
Am J Respir Crit Care Med. 2011 Mar 1;183(5):612-9. doi: 10.1164/rccm.201002-0178OC. Epub 2010 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验