Suppr超能文献

使用动态热成像进行准确且非侵入性皮肤癌诊断的检测理论。

Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging.

作者信息

Godoy Sebastián E, Hayat Majeed M, Ramirez David A, Myers Stephen A, Padilla R Steven, Krishna Sanjay

机构信息

Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, MSC04 2710, Albuquerque, NM 87106-4343, USA.

Department of Electrical and Computer Engineering, University of New Mexico, 1 University of New Mexico, MSC01 1100, Albuquerque, NM 87131-0001, USA.

出版信息

Biomed Opt Express. 2017 Mar 22;8(4):2301-2323. doi: 10.1364/BOE.8.002301. eCollection 2017 Apr 1.

Abstract

Skin cancer is the most common cancer in the United States with over 3.5M annual cases. Presently, visual inspection by a dermatologist has good sensitivity (> 90%) but poor specificity (< 10%), especially for melanoma, which leads to a high number of unnecessary biopsies. Here we use dynamic thermal imaging (DTI) to demonstrate a rapid, accurate and non-invasive imaging system for detection of skin cancer. In DTI, the lesion is cooled down and the thermal recovery is recorded using infrared imaging. The thermal recovery curves of the suspected lesions are then utilized in the context of continuous-time detection theory in order to define an optimal statistical decision rule such that the sensitivity of the algorithm is guaranteed to be at a maximum for every prescribed false-alarm probability. The proposed methodology was tested in a pilot study including 140 human subjects demonstrating a sensitivity in excess of 99% for a prescribed specificity in excess of 99% for detection of skin cancer. To the best of our knowledge, this is the highest reported accuracy for any non-invasive skin cancer diagnosis method.

摘要

皮肤癌是美国最常见的癌症,每年有超过350万例病例。目前,皮肤科医生的目视检查具有良好的敏感性(>90%),但特异性较差(<10%),尤其是对于黑色素瘤,这导致了大量不必要的活检。在此,我们使用动态热成像(DTI)来展示一种用于检测皮肤癌的快速、准确且非侵入性的成像系统。在DTI中,病变部位被冷却,然后使用红外成像记录热恢复情况。接着,在连续时间检测理论的背景下利用疑似病变的热恢复曲线,以定义一个最优的统计决策规则,从而确保算法的敏感性在每个规定的误报概率下都能达到最大值。所提出的方法在一项包括140名人类受试者的初步研究中进行了测试,结果表明,对于规定的超过99%的特异性,检测皮肤癌的敏感性超过99%。据我们所知,这是任何非侵入性皮肤癌诊断方法所报道的最高准确率。

相似文献

1
Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging.
Biomed Opt Express. 2017 Mar 22;8(4):2301-2323. doi: 10.1364/BOE.8.002301. eCollection 2017 Apr 1.
3
Visual inspection and dermoscopy, alone or in combination, for diagnosing keratinocyte skin cancers in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD011901. doi: 10.1002/14651858.CD011901.pub2.
4
Teledermatology for diagnosing skin cancer in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013193. doi: 10.1002/14651858.CD013193.
5
Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013186. doi: 10.1002/14651858.CD013186.
6
Visual inspection for diagnosing cutaneous melanoma in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013194. doi: 10.1002/14651858.CD013194.
8
Exfoliative cytology for diagnosing basal cell carcinoma and other skin cancers in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013187. doi: 10.1002/14651858.CD013187.
9
The role of dynamic infrared imaging in melanoma diagnosis.
Expert Rev Dermatol. 2013 Apr 1;8(2):177-184. doi: 10.1586/edm.13.15.
10
High-frequency ultrasound for diagnosing skin cancer in adults.
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013188. doi: 10.1002/14651858.CD013188.

引用本文的文献

1
Review of Non-Invasive Imaging Technologies for Cutaneous Melanoma.
Biosensors (Basel). 2025 May 7;15(5):297. doi: 10.3390/bios15050297.
2
Infrared thermal modulation endoscopy for label-free tumor detection.
Sci Rep. 2024 Dec 30;14(1):31575. doi: 10.1038/s41598-024-76173-8.
3
An automatic approach to detect skin cancer utilizing active infrared thermography.
Heliyon. 2024 Nov 26;10(23):e40608. doi: 10.1016/j.heliyon.2024.e40608. eCollection 2024 Dec 15.
4
Non-invasive infrared thermography for screening, diagnosis and monitoring of skin cancer.
J Dtsch Dermatol Ges. 2025 Jan;23(1):7-17. doi: 10.1111/ddg.15598. Epub 2024 Dec 4.
8
Low-cost thermal imaging with machine learning for non-invasive diagnosis and therapeutic monitoring of pneumonia.
Infrared Phys Technol. 2022 Jun;123:104201. doi: 10.1016/j.infrared.2022.104201. Epub 2022 May 14.
9
Skin Cancer Detection Using Infrared Thermography: Measurement Setup, Procedure and Equipment.
Sensors (Basel). 2022 Apr 26;22(9):3327. doi: 10.3390/s22093327.

本文引用的文献

1
Medical applications of infrared thermography: A review.
Infrared Phys Technol. 2012 Jul;55(4):221-235. doi: 10.1016/j.infrared.2012.03.007. Epub 2012 Apr 13.
2
Q-r curve of thermal tomography and its clinical application on breast tumor diagnosis.
Biomed Opt Express. 2015 Mar 3;6(4):1109-23. doi: 10.1364/BOE.6.001109. eCollection 2015 Apr 1.
4
Model-based classification methods of global patterns in dermoscopic images.
IEEE Trans Med Imaging. 2014 May;33(5):1137-47. doi: 10.1109/TMI.2014.2305769.
5
Distinct melanoma types based on reflectance confocal microscopy.
Exp Dermatol. 2014 Jun;23(6):414-8. doi: 10.1111/exd.12417.
6
Optical coherence tomography imaging of non-melanoma skin cancer undergoing photodynamic therapy reveals subclinical residual lesions.
Photodiagnosis Photodyn Ther. 2014 Mar;11(1):7-12. doi: 10.1016/j.pdpdt.2013.11.003. Epub 2013 Nov 23.
7
The role of dynamic infrared imaging in melanoma diagnosis.
Expert Rev Dermatol. 2013 Apr 1;8(2):177-184. doi: 10.1586/edm.13.15.
8
On the comparison of diagnosis and management of melanoma between dermatologists and MelaFind.
JAMA Dermatol. 2013 May;149(5):622-3. doi: 10.1001/jamadermatol.2013.3405.
9
Band selection in spectral imaging for non-invasive melanoma diagnosis.
Biomed Opt Express. 2013 Apr 1;4(4):514-9. doi: 10.1364/BOE.4.000514. Epub 2013 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验