Suppr超能文献

人工智能在头颈部皮肤癌早期诊断和分子分类中的作用:一种多学科方法。

The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach.

作者信息

Semerci Zeliha Merve, Toru Havva Serap, Çobankent Aytekin Esra, Tercanlı Hümeyra, Chiorean Diana Maria, Albayrak Yalçın, Cotoi Ovidiu Simion

机构信息

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Akdeniz University, 07070 Antalya, Turkey.

Department of Pathology, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey.

出版信息

Diagnostics (Basel). 2024 Jul 10;14(14):1477. doi: 10.3390/diagnostics14141477.

Abstract

Cancer remains a significant global health concern, with increasing genetic and metabolic irregularities linked to its onset. Among various forms of cancer, skin cancer, including squamous cell carcinoma, basal cell carcinoma, and melanoma, is on the rise worldwide, often triggered by ultraviolet (UV) radiation. The propensity of skin cancer to metastasize highlights the importance of early detection for successful treatment. This narrative review explores the evolving role of artificial intelligence (AI) in diagnosing head and neck skin cancers from both radiological and pathological perspectives. In the past two decades, AI has made remarkable progress in skin cancer research, driven by advances in computational capabilities, digitalization of medical images, and radiomics data. AI has shown significant promise in image-based diagnosis across various medical domains. In dermatology, AI has played a pivotal role in refining diagnostic and treatment strategies, including genomic risk assessment. This technology offers substantial potential to aid primary clinicians in improving patient outcomes. Studies have demonstrated AI's effectiveness in identifying skin lesions, categorizing them, and assessing their malignancy, contributing to earlier interventions and better prognosis. The rising incidence and mortality rates of skin cancer, coupled with the high cost of treatment, emphasize the need for early diagnosis. Further research and integration of AI into clinical practice are warranted to maximize its benefits in skin cancer diagnosis and treatment.

摘要

癌症仍然是一个重大的全球健康问题,其发病与越来越多的基因和代谢异常有关。在各种癌症中,包括鳞状细胞癌、基底细胞癌和黑色素瘤在内的皮肤癌在全球范围内呈上升趋势,通常由紫外线(UV)辐射引发。皮肤癌转移的倾向凸显了早期检测对于成功治疗的重要性。这篇叙述性综述从放射学和病理学角度探讨了人工智能(AI)在诊断头颈部皮肤癌方面不断演变的作用。在过去二十年中,受计算能力的进步、医学图像数字化和放射组学数据的推动,人工智能在皮肤癌研究方面取得了显著进展。人工智能在各个医学领域基于图像的诊断中显示出巨大的前景。在皮肤科,人工智能在完善诊断和治疗策略(包括基因组风险评估)方面发挥了关键作用。这项技术具有巨大潜力,可帮助初级临床医生改善患者预后。研究表明,人工智能在识别皮肤病变、对其进行分类以及评估其恶性程度方面具有有效性,有助于早期干预和更好的预后。皮肤癌发病率和死亡率的上升,再加上治疗成本高昂,凸显了早期诊断的必要性。有必要进一步开展研究并将人工智能整合到临床实践中,以最大限度地发挥其在皮肤癌诊断和治疗中的益处。

相似文献

2
Artificial Intelligence in Dermatology: Challenges and Perspectives.皮肤科中的人工智能:挑战与展望
Dermatol Ther (Heidelb). 2022 Dec;12(12):2637-2651. doi: 10.1007/s13555-022-00833-8. Epub 2022 Oct 28.
3
Artificial Intelligence in Head and Neck Surgery.人工智能在头颈部外科中的应用。
Otolaryngol Clin North Am. 2024 Oct;57(5):803-820. doi: 10.1016/j.otc.2024.05.001. Epub 2024 Jun 22.
8
Artificial intelligence and skin cancer.人工智能与皮肤癌
Front Med (Lausanne). 2024 Mar 19;11:1331895. doi: 10.3389/fmed.2024.1331895. eCollection 2024.
9
Teledermatology for diagnosing skin cancer in adults.用于诊断成人皮肤癌的远程皮肤病学。
Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013193. doi: 10.1002/14651858.CD013193.

本文引用的文献

4
Non-Melanoma Skin Cancer: Statistical Associations between Clinical Parameters.非黑色素瘤皮肤癌:临床参数之间的统计关联
Curr Health Sci J. 2022 Jan-Mar;48(1):110-115. doi: 10.12865/CHSJ.48.01.16. Epub 2022 Mar 31.
6
AI in health and medicine.人工智能在医疗中的应用。
Nat Med. 2022 Jan;28(1):31-38. doi: 10.1038/s41591-021-01614-0. Epub 2022 Jan 20.
9
Comparison of SOX-10, HMB-45, and Melan-A in Benign Melanocytic Lesions.SOX-10、HMB-45和Melan-A在良性黑素细胞性病变中的比较
Clin Cosmet Investig Dermatol. 2021 Oct 5;14:1419-1425. doi: 10.2147/CCID.S333376. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验