Suppr超能文献

用于高性能超级电容器的不同形态 CuSnS 的简易合成。

Facile Synthesis of Different Morphologies of CuSnS for High-Performance Supercapacitors.

机构信息

Clean Energy Materials and Engineering Center, School of Microelectronics and Solid-State Electronics, State Key Laboratory of Electronic Thin Film and Integrated Device, University of Electronic Science and Technology of China , Chengdu Sichuan, China.

Department of Electrical & Computer Engineering and Materials Science and Engineering Program, University of Houston , Houston, Texas 77204, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Aug 9;9(31):26038-26044. doi: 10.1021/acsami.7b07190. Epub 2017 Jul 31.

Abstract

CuSnS is considered as an emerging potential candidate for electrode materials due to considerable interlayer spaces and tunnels in its crystal structures and excellent conducting ability. Ternary CuSnS as anode in lithium ion batteries has already been reported, but it is rarely mentioned to be applied in supercapacitors which is considered to be a complementary energy storage device for lithium ion batteries. It is an effective method to improve the electrochemical performance of materials by adjusting the morphology and microstructure of materials. In present study, ternary nanosheet-assembled CuSnS microspheres (M-CTS) and nanoparticles-like CuSnS (N-CTS) are synthesized via a facile solvothermal route. The results suggest that CuSnS microspheres (M-CTS) exhibit better capacitive performance compared with CuSnS (N-CTS) nanoparticles, which means that morphology does have a significant effect on the electrochemical reaction. M-CTS presents excellent supercapacitor performances with the high specific capacity of about 406 C g at a current density of 1 A g and achieves a high energy density of 85.6 W h kg and power density of 720 W kg. The remarkable electrochemical performance of CuSnS can be attributed to the large specific surface area, smaller average pore size, and improved electrical conductivity. Our research indicates that it is very suitable for large-scale production and has enormous potential in the practical application of high-performance supercapacitors.

摘要

CuSnS 因其晶体结构中具有可观的层间空间和隧道,以及优异的导电能力,被认为是一种有前途的电极材料。三元 CuSnS 作为锂离子电池的阳极已经有报道,但很少有将其应用于超级电容器的报道,因为超级电容器被认为是锂离子电池的互补储能设备。通过调整材料的形貌和微观结构来提高材料的电化学性能是一种有效的方法。在本研究中,通过简便的溶剂热法合成了三元纳米片组装的 CuSnS 微球 (M-CTS) 和纳米颗粒状的 CuSnS (N-CTS)。结果表明,CuSnS 微球 (M-CTS) 的比容量优于 CuSnS (N-CTS) 纳米颗粒,这意味着形貌对电化学反应有显著影响。M-CTS 具有出色的超级电容器性能,在 1 A g 的电流密度下具有约 406 C g 的高比容量,实现了 85.6 W h kg 的高能量密度和 720 W kg 的高功率密度。CuSnS 的显著电化学性能可归因于较大的比表面积、较小的平均孔径和提高的电导率。我们的研究表明,它非常适合大规模生产,并在高性能超级电容器的实际应用中具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验