Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.
J Am Chem Soc. 2017 Aug 23;139(33):11451-11459. doi: 10.1021/jacs.7b04247. Epub 2017 Aug 14.
What do experimentally measured kinetic isotope effects (KIEs) tell us about H-abstraction reactions with multispin-state reactivity options? Using DFT calculations with tunneling corrections for experimentally studied H-abstraction reactions of porphyrin-Compound II species (Chem.-Eur. J. 2014, 20, 14437; Angew. Chem., Int. Ed. 2008, 47, 7321) with cyclohexane, dihydroanthracene (DHA), and xanthene (Xan), we show here that KIE is a selective probe that identifies the experimentally reactive spin state. At the same time, comparison of calculated and experimental KIE values permits us to determine the structural orientation of the transition states, as well as the presence/absence of an axial ligand, and the effect of porphyrin substituents. The studied compound II (Cpd II) species involve porphine, and porphyrin ligands with different meso-substituents, TPFPP (tetrakis(pentafluorophenyl)porphyrin dianion) and TMP (tetramesitylporphyrin dianion), with and without imidazole axial ligands. The DFT calculations reveal three potential pathways: quintet and triplet σ-pathways (Hσ and Hσ) that possess linear transition state (TS) structures, and a triplet π -pathway (Hπ) having a bent TS structure. Without an axial ligand, the Hσ pathways for these Cpd II complexes cross below the triplet states. The axial ligand raises the barriers for the quintet and triplet σ-pathways and quenches any chances for two-state reactivity, thus proceeding via the Hπ pathway. All of these pathways exhibit characteristic KIE values: very large for Hπ (48-200), small for Hσ (3-9), and intermediate for Hσ (23-51). The calculated KIEs for (TPFPP)Fe═O without an axial ligand reveal that Hσ is the only pathway having a KIE that matches the experimental values, for the reactions with DHA and Xan (Angew. Chem., Int. Ed. 2008, 47, 7321). Indeed, theory shows that tunneling significantly lowers the Hσ barrier rendering it the sole reactive state for the reaction. A prediction is made for the reactivity and KIE of (TMP)Fe═O complex, and a comparison is made with the analogous nonheme complexes.
实验测量的动力学同位素效应 (KIE) 能告诉我们多自旋态反应中 H 原子的提取反应的哪些信息?我们使用密度泛函理论 (DFT) 计算并结合对实验研究中的卟啉-化合物 II 物种的 H 原子提取反应进行了隧穿修正(Chem.-Eur. J. 2014, 20, 14437;Angew. Chem., Int. Ed. 2008, 47, 7321),包括环己烷、二氢蒽 (DHA) 和呫吨 (Xan)。我们在此表明,KIE 是一种选择性探针,可识别实验上的反应性自旋态。同时,比较计算和实验 KIE 值可以帮助我们确定过渡态的结构取向,以及轴向配体的存在/不存在,以及卟啉取代基的影响。研究的化合物 II (Cpd II) 物种涉及卟啉和具有不同中位取代基的卟啉配体,TPFPP(四(五氟苯基)卟啉二阴离子)和 TMP(四间甲基苯基卟啉二阴离子),带有和不带有咪唑轴向配体。DFT 计算揭示了三种潜在途径:五重态和三重态 σ-途径(Hσ 和 Hσ),它们具有线性过渡态 (TS) 结构,以及三重态 π-途径(Hπ),具有弯曲的 TS 结构。没有轴向配体时,这些 Cpd II 配合物的 Hσ 途径低于三重态。轴向配体增加了五重态和三重态 σ-途径的势垒,并消除了两态反应的任何可能性,因此通过 Hπ 途径进行。所有这些途径都表现出特征性的 KIE 值:Hπ 非常大(48-200),Hσ 很小(3-9),Hσ 中等(23-51)。没有轴向配体时(TPFPP)Fe═O 的计算 KIE 表明,Hσ 是唯一具有与实验值匹配的 KIE 的途径,适用于与 DHA 和 Xan 的反应(Angew. Chem., Int. Ed. 2008, 47, 7321)。实际上,理论表明隧穿会显着降低 Hσ 势垒,使其成为反应的唯一反应态。对(TMP)Fe═O 配合物的反应性和 KIE 进行了预测,并与类似的非血红素配合物进行了比较。