Suppr超能文献

脂质筏感知并引导电场诱导的迁移。

Lipid rafts sense and direct electric field-induced migration.

机构信息

Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei 106, Taiwan.

Department of Chemical Engineering, School of Engineering, National Taiwan University, Taipei 106, Taiwan.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8568-8573. doi: 10.1073/pnas.1702526114. Epub 2017 Jul 24.

Abstract

Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.

摘要

内源性电场 (EFs) 参与发育调控和伤口愈合。尽管这一现象已经存在了一个多世纪,但细胞如何感知外部 EF 还不清楚。膜蛋白对电泳和电渗流的反应,长期以来一直被认为是感应分子。然而,表面蛋白的特定电荷修饰并没有改变细胞在 EF 中的迁移运动性或方向性。此外,对称交流 (AC) EF 以频率依赖的方式引导细胞迁移。由于它们的电荷和凝聚能力,糖脂因此很可能是驱动膜蛋白极化和细胞内信号转导的主要 EF 传感器。我们证明,去污剂抗性膜纳米区,也称为脂筏,是 EF 感应的主要反应元件。窖蛋白和信号蛋白的聚类和激活进一步稳定了筏结构,并反馈下游信号事件,如 rho 和 PI3K 的激活。理论模型支持实验结果,并预测了 AC 频率依赖性的细胞和筏迁移。我们的结果为细胞电感应建立了一个基本机制,并为脂筏机械转导提供了一个作用。

相似文献

1
Lipid rafts sense and direct electric field-induced migration.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8568-8573. doi: 10.1073/pnas.1702526114. Epub 2017 Jul 24.
2
Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism.
Bioelectromagnetics. 2013 Feb;34(2):85-94. doi: 10.1002/bem.21748. Epub 2012 Aug 21.
3
Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation.
J Dermatol Sci. 2017 Feb;85(2):96-105. doi: 10.1016/j.jdermsci.2016.11.007. Epub 2016 Nov 18.
4
Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1.
Placenta. 2007 Feb-Mar;28(2-3):139-51. doi: 10.1016/j.placenta.2005.12.005. Epub 2006 Feb 16.
6
Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation.
J Cell Biol. 2002 Apr 15;157(2):277-89. doi: 10.1083/jcb.200109031.
7
Lipid rafts as major platforms for signaling regulation in cancer.
Adv Biol Regul. 2015 Jan;57:130-46. doi: 10.1016/j.jbior.2014.10.003. Epub 2014 Oct 27.
8
Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.
Biochim Biophys Acta. 2014 Jan;1841(1):190-203. doi: 10.1016/j.bbalip.2013.10.006. Epub 2013 Oct 11.
9
α2β1 integrin and RhoA mediates electric field-induced ligament fibroblast migration directionality.
J Orthop Res. 2013 Feb;31(2):322-7. doi: 10.1002/jor.22215. Epub 2012 Aug 21.
10
Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression.
Oncotarget. 2016 Sep 27;7(39):63856-63869. doi: 10.18632/oncotarget.11697.

引用本文的文献

2
Studying biological events using biopolymeric matrices.
Biophys Rev. 2025 Mar 28;17(2):385-394. doi: 10.1007/s12551-025-01303-z. eCollection 2025 Apr.
3
Competing signaling pathways controls electrotaxis.
iScience. 2025 Apr 2;28(5):112329. doi: 10.1016/j.isci.2025.112329. eCollection 2025 May 16.
4
Proximity-activated DNA scanning encoded sequencing for massive access to membrane proteins nanoscale organization.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2425000122. doi: 10.1073/pnas.2425000122. Epub 2025 Apr 10.
5
Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing.
Adv Sci (Weinh). 2025 May;12(18):e2416267. doi: 10.1002/advs.202416267. Epub 2025 Apr 7.
6
The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology.
Cancers (Basel). 2024 Nov 21;16(23):3908. doi: 10.3390/cancers16233908.
7
Cell shape and orientation control galvanotactic accuracy.
Soft Matter. 2024 Nov 13;20(44):8866-8887. doi: 10.1039/d4sm00952e.
8
Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective.
Heliyon. 2024 Sep 23;10(19):e38112. doi: 10.1016/j.heliyon.2024.e38112. eCollection 2024 Oct 15.
9
Glutamate, Gangliosides, and the Synapse: Electrostatics at Work in the Brain.
Int J Mol Sci. 2024 Aug 6;25(16):8583. doi: 10.3390/ijms25168583.
10
Enhancing cellular behavior in repaired tissue via silk fibroin-integrated triboelectric nanogenerators.
Microsyst Nanoeng. 2024 May 24;10:68. doi: 10.1038/s41378-024-00694-5. eCollection 2024.

本文引用的文献

1
Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?
Biochim Biophys Acta Biomembr. 2017 May;1859(5):789-802. doi: 10.1016/j.bbamem.2017.01.030. Epub 2017 Jan 28.
2
Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D.
Nat Commun. 2016 Dec 15;7:13873. doi: 10.1038/ncomms13873.
3
Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):769-74. doi: 10.1073/pnas.1524523113. Epub 2016 Jan 5.
4
Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin.
Mol Biol Cell. 2015 Nov 5;26(22):4033-45. doi: 10.1091/mbc.E15-06-0397. Epub 2015 Sep 16.
5
STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
Nano Lett. 2015 Sep 9;15(9):5912-8. doi: 10.1021/acs.nanolett.5b02001. Epub 2015 Aug 7.
6
Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins.
Cell. 2015 Apr 23;161(3):581-594. doi: 10.1016/j.cell.2015.03.048.
7
Electrophoresis of cellular membrane components creates the directional cue guiding keratocyte galvanotaxis.
Curr Biol. 2013 Apr 8;23(7):560-8. doi: 10.1016/j.cub.2013.02.047. Epub 2013 Mar 28.
8
The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp-Csk-Src pathway.
Cell Signal. 2013 Apr;25(4):848-59. doi: 10.1016/j.cellsig.2013.01.010. Epub 2013 Jan 16.
9
α2β1 integrin and RhoA mediates electric field-induced ligament fibroblast migration directionality.
J Orthop Res. 2013 Feb;31(2):322-7. doi: 10.1002/jor.22215. Epub 2012 Aug 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验