Fraldi Massimiliano, Spadaccio Cristiano, Mihos Christos G, Nappi Francesco
Department of Structures for Engineering and Architecture and Interdisciplinary Research Center for Biomaterials, Università di Napoli "Federico II" Naples, Italy.
Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, UK.
J Thorac Dis. 2017 Jun;9(Suppl 7):S661-S664. doi: 10.21037/jtd.2017.06.33.
The failure of mitral valve repair procedures revealed in the outcomes of the recent randomized studies is suggesting the necessity for a better understanding of the biomechanical mechanisms underlying the failure of the surgical approaches. Use of biomechanical modelling and finite element analysis (FEA) in cardiovascular research is an important aid in this context. In our group we developed a biomechanical model taking into account all the component of the mitral valve functional unit including the valve leaflets, the annulus, the papillary muscles, the chordae tendinea and the ventricular geometry. The two-dimensional mathematical model was capable to predict some of the actual geometrical and mechanical features of the valvular and subvalvular apparatuses in physiological and pathological conditions providing the engineering quantitative relations between closing and tethering forces and the mechanisms governing the mitral valve unit function. This model might further become patient-specific by means of 3D reconstruction of clinical imaging. Images are first converted in a standard vector format (DICOM, etc.), then automatically translated in a "structural" finite element model and finally implemented in a finite element code. This allows for in silico simulations to virtually explore the effects of different surgical approaches at an early stage after the procedure, to help the operative decision processes, or to optimize the design of surgical implants.
近期随机研究结果显示二尖瓣修复手术存在失败情况,这表明有必要更好地理解手术方法失败背后的生物力学机制。在这种背景下,生物力学建模和有限元分析(FEA)在心血管研究中的应用是一项重要辅助手段。在我们团队中,我们开发了一个生物力学模型,该模型考虑了二尖瓣功能单元的所有组成部分,包括瓣膜小叶、瓣环、乳头肌、腱索和心室几何形状。这个二维数学模型能够预测生理和病理条件下瓣膜及瓣膜下装置的一些实际几何和力学特征,提供关闭力和系绳力之间的工程定量关系以及控制二尖瓣单元功能的机制。通过临床成像的三维重建,该模型可能进一步实现针对特定患者。图像首先转换为标准矢量格式(如DICOM等),然后自动转换为“结构”有限元模型,最后在有限元代码中实现。这使得在计算机模拟中能够在手术后早期虚拟探索不同手术方法的效果,帮助手术决策过程,或优化手术植入物的设计。