Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
CREST, JST, Sakyo-ku, Kyoto, Japan.
Appl Microbiol Biotechnol. 2017 Sep;101(17):6627-6636. doi: 10.1007/s00253-017-8418-y. Epub 2017 Jul 24.
Brown macroalgae are a sustainable and promising source for bioethanol production because they are abundant in ocean ecosystems and contain negligible quantities of lignin. Brown macroalgae contain cellulose, hemicellulose, mannitol, laminarin, and alginate as major carbohydrates. Among these carbohydrates, brown macroalgae are characterized by high levels of alginate and mannitol. The direct bioconversion of alginate and mannitol into ethanol requires extensive bioengineering of assimilation processes in the standard industrial microbe Saccharomyces cerevisiae. Here, we constructed an alginate-assimilating S. cerevisiae recombinant strain by genome integration and overexpression of the genes encoding endo- and exo-type alginate lyases, DEH (4-deoxy-L-erythro-5-hexoseulose uronic acid) transporter, and components of the DEH metabolic pathway. Furthermore, the mannitol-metabolizing capacity of S. cerevisiae was enhanced by prolonged culture in a medium containing mannitol as the sole carbon source. When the constructed strain AM1 was anaerobically cultivated in a fermentation medium containing 6% (w/v) total sugars (approximately 1:2 ratio of alginate/mannitol), it directly produced ethanol from alginate and mannitol, giving 8.8 g/L ethanol and yields of up to 32% of the maximum theoretical yield from consumed sugars. These results indicate that all major carbohydrates of brown macroalgae can be directly converted into bioethanol by S. cerevisiae. This strain and system could provide a platform for the complete utilization of brown macroalgae.
褐藻是生物乙醇生产的一种可持续且有前景的原料,因为它们在海洋生态系统中丰富且木质素含量可忽略不计。褐藻含有纤维素、半纤维素、甘露醇、岩藻糖和褐藻胶作为主要碳水化合物。在这些碳水化合物中,褐藻的特征在于褐藻胶和甘露醇含量高。褐藻胶和甘露醇直接生物转化为乙醇需要对标准工业微生物酿酒酵母中的同化过程进行广泛的生物工程改造。在这里,我们通过基因组整合和过表达编码内切和外切型褐藻胶裂解酶、DEH(4-去氧-L-赤-5-己酮糖酸)转运蛋白和 DEH 代谢途径成分的基因,构建了一种能够利用褐藻胶的酿酒酵母重组菌株。此外,通过在含有甘露醇作为唯一碳源的培养基中进行延长培养,增强了酿酒酵母利用甘露醇的能力。当构建的菌株 AM1 在含有 6%(w/v)总糖(褐藻胶/甘露醇比约为 1:2)的发酵培养基中进行厌氧培养时,它可以直接从褐藻胶和甘露醇中生产乙醇,产率达到 8.8 g/L,消耗糖的最大理论产率高达 32%。这些结果表明,褐藻的所有主要碳水化合物都可以被酿酒酵母直接转化为生物乙醇。该菌株和系统可为褐藻的完全利用提供一个平台。