Suppr超能文献

适应性进化在工程化酿酒酵母中揭示了 4-脱氧-L-赤-5-己酮糖醛酸还原酶在海藻酸盐利用中的关键作用。

Crucial role of 4-deoxy-L-erythro-5-hexoseulose uronate reductase for alginate utilization revealed by adaptive evolution in engineered Saccharomyces cerevisiae.

机构信息

Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.

Faculty of Science and Engineering, Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka, 572-8508, Japan.

出版信息

Sci Rep. 2017 Jun 23;7(1):4206. doi: 10.1038/s41598-017-04481-3.

Abstract

In brown macroalgae, alginate and D-mannitol are promising carbohydrates for biorefinery. Saccharomyces cerevisiae is widely used as a microbial cell factory, but this budding yeast is unable to utilize either alginate or D-mannitol. Alginate can be depolymerized by both endo-type and exo-type alginate lyases, yielding a monouronate, 4-deoxy-L-erythro-5-hexoseulose uronate (DEH), a key intermediate in the metabolism of alginate. Here, we constructed engineered two S. cerevisiae strains that are able to utilize both DEH and D-mannitol on two different strain backgrounds, and we also improved their aerobic growth in a DEH liquid medium through adaptive evolution. In both evolved strains, one of the causal mutations was surprisingly identical, a c.50A > G mutation in the codon-optimized NAD(P)H-dependent DEH reductase gene, one of the 4 genes introduced to confer the capacity to utilize DEH. This mutation resulted in an E17G substitution at a loop structure near the coenzyme-binding site of this reductase, and enhanced the reductase activity and aerobic growth in both evolved strains. Thus, the crucial role for this reductase reaction in the metabolism of DEH in the engineered S. cerevisiae is demonstrated, and this finding provides significant information for synthetic construction of a S. cerevisiae strain as a platform for alginate utilization.

摘要

在褐藻中,褐藻酸盐和 D-甘露醇是很有前途的生物炼制碳水化合物。酿酒酵母被广泛用作微生物细胞工厂,但这种出芽酵母既不能利用褐藻酸盐也不能利用 D-甘露醇。褐藻酸盐可以被内切型和外切型褐藻胶裂解酶解聚,生成单糖醛酸,即 4-脱氧-L-赤-5-羟戊糖醛酸(DEH),这是褐藻酸盐代谢中的关键中间体。在这里,我们构建了两种能够在两种不同的酵母背景下利用 DEH 和 D-甘露醇的工程酿酒酵母菌株,并且还通过适应性进化提高了它们在 DEH 液体培养基中的好氧生长能力。在这两种进化菌株中,一个引起变化的原因是相同的,即在优化后的 NAD(P)H 依赖的 DEH 还原酶基因的密码子中,一个 c.50A > G 突变,这是引入的 4 个基因之一,赋予了利用 DEH 的能力。该突变导致该还原酶的辅酶结合位点附近的环结构中发生 E17G 取代,增强了这两种进化菌株中的还原酶活性和有氧生长能力。因此,证明了这种还原酶反应在工程酿酒酵母中 DEH 代谢中的关键作用,这一发现为合成构建利用褐藻酸盐的酿酒酵母菌株提供了重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d2/5482797/b4b5f30be164/41598_2017_4481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验