MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.
School of Chemistry and Biochemistry, National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva , Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland.
J Am Chem Soc. 2017 Aug 2;139(30):10172-10175. doi: 10.1021/jacs.7b02952. Epub 2017 Jul 25.
Quantum dots (QDs) are extremely bright, photostable, nanometer particles broadly used to investigate single molecule dynamics in vitro. However, the use of QDs in vivo to investigate single molecule dynamics is impaired by the absence of an efficient way to chemically deliver them into the cytosol of cells. Indeed, current methods (using cell-penetrating peptides for instance) provide very low yields: QDs stay at the plasma membrane or are trapped in endosomes. Here, we introduce a technology based on cell-penetrating poly(disulfide)s that solves this problem: we deliver about 70 QDs per cell, and 90% appear to freely diffuse in the cytosol. Furthermore, these QDs can be functionalized, carrying GFP or anti-GFP nanobodies for instance. Our technology thus paves the way toward single molecule imaging in cells and living animals, allowing to probe biophysical properties of the cytosol.
量子点(QDs)是一种极其明亮、光稳定的纳米颗粒,广泛用于体外研究单分子动力学。然而,由于缺乏将其有效递送至细胞胞质溶胶的方法,因此在体内使用 QDs 来研究单分子动力学受到了限制。实际上,目前的方法(例如使用穿膜肽)的产率非常低:QDs 停留在质膜上或被困在内体中。在这里,我们介绍了一种基于穿膜聚二硫代物的技术,该技术解决了这个问题:我们每细胞递送约 70 个 QD,其中 90%似乎可自由扩散到胞质溶胶中。此外,这些 QD 可以进行功能化,例如携带 GFP 或抗 GFP 纳米抗体。因此,我们的技术为在细胞和活体动物中进行单分子成像铺平了道路,可用于探测胞质溶胶的生物物理特性。