Lan Zibo, Hu Ying, Yang Shuang, Ren Jiayun, Zhang He
School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
Department of Ophthalmology, The Forth People's Hospital of Shenyang, Huanggu District, No. 20 Huanghenan Street, Shenyang 110031, China.
Sensors (Basel). 2025 Jul 8;25(14):4258. doi: 10.3390/s25144258.
This study proposes a deep learning-based, non-contact method for detecting elevated intraocular pressure (IOP) by integrating Scheimpflug images with corneal biomechanical features. Glaucoma, the leading cause of irreversible blindness worldwide, requires accurate IOP monitoring for early diagnosis and effective treatment. Traditional IOP measurements are often influenced by corneal biomechanical variability, leading to inaccurate readings. To address these limitations, we present a multi-modal framework incorporating CycleGAN for data augmentation, Swin Transformer for visual feature extraction, and the Kolmogorov-Arnold Network (KAN) for efficient fusion of heterogeneous data. KAN approximates complex nonlinear relationships with fewer parameters, making it effective in small-sample scenarios with intricate variable dependencies. A diverse dataset was constructed and augmented to alleviate data scarcity and class imbalance. By combining Scheimpflug imaging with clinical parameters, the model effectively integrates multi-source information to improve high IOP prediction accuracy. Experiments on a real-world private hospital dataset show that the model achieves a diagnostic accuracy of 0.91, outperforming traditional approaches. Grad-CAM visualizations identify critical anatomical regions, such as corneal thickness and anterior chamber depth, that correlate with IOP changes. These findings underscore the role of corneal structure in IOP regulation and suggest new directions for non-invasive, biomechanics-informed IOP screening.
本研究提出了一种基于深度学习的非接触式方法,通过将Scheimpflug图像与角膜生物力学特征相结合来检测眼内压(IOP)升高。青光眼是全球不可逆失明的主要原因,需要准确监测IOP以进行早期诊断和有效治疗。传统的IOP测量常常受到角膜生物力学变异性的影响,导致读数不准确。为了解决这些局限性,我们提出了一个多模态框架,该框架结合了用于数据增强的CycleGAN、用于视觉特征提取的Swin Transformer以及用于高效融合异构数据的柯尔莫哥洛夫 - 阿诺德网络(KAN)。KAN用较少的参数近似复杂的非线性关系,使其在具有复杂变量依赖性的小样本场景中有效。构建并扩充了一个多样化的数据集,以缓解数据稀缺和类别不平衡问题。通过将Scheimpflug成像与临床参数相结合,该模型有效地整合多源信息以提高高IOP预测准确性。在一个真实世界的私立医院数据集上进行的实验表明,该模型的诊断准确率达到0.91,优于传统方法。Grad-CAM可视化识别出与IOP变化相关的关键解剖区域,如角膜厚度和前房深度。这些发现强调了角膜结构在IOP调节中的作用,并为无创、基于生物力学的IOP筛查提出了新方向。