Chongqing University of Posts and Telecommunications, School of Computer Science and Technology, Chongqing, 400065, China.
Yangtze Normal University, College of Computer Engineering, Chongqing, 408000, China.
Sci Rep. 2017 Jul 25;7(1):6366. doi: 10.1038/s41598-017-06486-4.
Most of Quantum Secret Sharing(QSS) are (n, n) threshold 2-level schemes, in which the 2-level secret cannot be reconstructed until all n shares are collected. In this paper, we propose a (t, n) threshold d-level QSS scheme, in which the d-level secret can be reconstructed only if at least t shares are collected. Compared with (n, n) threshold 2-level QSS, the proposed QSS provides better universality, flexibility, and practicability. Moreover, in this scheme, any one of the participants does not know the other participants' shares, even the trusted reconstructor Bob is no exception. The transformation of the particles includes some simple operations such as d-level CNOT, Quantum Fourier Transform(QFT), Inverse Quantum Fourier Transform(IQFT), and generalized Pauli operator. The transformed particles need not to be transmitted from one participant to another in the quantum channel. Security analysis shows that the proposed scheme can resist intercept-resend attack, entangle-measure attack, collusion attack, and forgery attack. Performance comparison shows that it has lower computation and communication costs than other similar schemes when 2 < t < n - 1.
大多数量子秘密共享(QSS)都是(n, n)门限 2 级方案,其中只有收集到所有 n 个份额才能重建 2 级秘密。在本文中,我们提出了一种(t, n)门限 d 级 QSS 方案,其中只有收集到至少 t 个份额才能重建 d 级秘密。与(n, n)门限 2 级 QSS 相比,所提出的 QSS 提供了更好的通用性、灵活性和实用性。此外,在该方案中,任何一个参与者都不知道其他参与者的份额,甚至是受信任的重构者 Bob 也不例外。粒子的变换包括一些简单的操作,如 d 级 CNOT、量子傅里叶变换(QFT)、逆量子傅里叶变换(IQFT)和广义 Pauli 算子。变换后的粒子不需要在量子信道中从一个参与者传输到另一个参与者。安全分析表明,该方案可以抵抗拦截-重发攻击、纠缠-测量攻击、共谋攻击和伪造攻击。性能比较表明,当 2 < t < n - 1 时,它比其他类似方案具有更低的计算和通信成本。