Suppr超能文献

利用两步法靶向诱导基因组局部突变技术在自交不亲和植物萝卜(L.)中进行突变体筛选。

Mutant selection in the self-incompatible plant radish ( L. ) using two-step TILLING.

作者信息

Kohzuma Kaori, Chiba Motoko, Nagano Soichiro, Anai Toyoaki, Ueda Miki U, Oguchi Riichi, Shirai Kazumasa, Hanada Kousuke, Hikosaka Kouki, Fujii Nobuharu

机构信息

Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.

CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan.

出版信息

Breed Sci. 2017 Jun;67(3):268-276. doi: 10.1270/jsbbs.16200. Epub 2017 May 31.

Abstract

Radish ( L. var. ), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant, improved mutation-breeding strategies are needed for this crop. TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful method used for reverse genetics. In this study, we developed a new TILLING strategy involving a two-step mutant selection process for mutagenized radish plants: the first selection is performed to identify a BCM line, that is, progenies of M plants crossed with wild-type, and the second step is performed to identify BCM individuals with mutations. We focused on Rubisco as a target, since Rubisco is the most abundant plant protein and a key photosynthetic enzyme. We found that the radish genome contains six genes and one pseudogene encoding small Rubisco subunits. We screened 955 EMS-induced BCM lines using our newly developed TILLING strategy and obtained six mutant lines for the six genes, encoding proteins with four different types of amino acid substitutions. Finally, we selected a homozygous mutant and subjected it to physiological measurements.

摘要

萝卜(L. var.)是一种广泛种植的根菜类作物,拥有一个大型的库器官(根部),这意味着通过改变植株的源和库能力,可以提高萝卜的光合活性。然而,由于萝卜是一种自交不亲和植物,因此需要改进该作物的诱变育种策略。定向诱导基因组局部突变(TILLING)是一种用于反向遗传学的强大方法。在本研究中,我们开发了一种新的TILLING策略,该策略涉及对诱变萝卜植株进行两步突变体筛选过程:第一步筛选是为了鉴定BCM系,即M植株与野生型杂交的后代,第二步是为了鉴定具有突变的BCM个体。我们将重点放在核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)上作为目标,因为Rubisco是植物中最丰富的蛋白质且是一种关键的光合酶。我们发现萝卜基因组包含六个编码小Rubisco亚基的基因和一个假基因。我们使用新开发的TILLING策略筛选了955个经甲基磺酸乙酯(EMS)诱变的BCM系,并获得了六个针对六个基因的突变系,这些系编码具有四种不同类型氨基酸替换的蛋白质。最后,我们选择了一个纯合突变体并对其进行生理测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e11/5515317/9f83c22a43be/67_16200_1.jpg

相似文献

1
Mutant selection in the self-incompatible plant radish ( L. ) using two-step TILLING.
Breed Sci. 2017 Jun;67(3):268-276. doi: 10.1270/jsbbs.16200. Epub 2017 May 31.
2
De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).
Gene. 2014 Nov 1;551(1):39-48. doi: 10.1016/j.gene.2014.08.038. Epub 2014 Aug 21.
3
Identification of candidate domestication regions in the radish genome based on high-depth resequencing analysis of 17 genotypes.
Theor Appl Genet. 2016 Sep;129(9):1797-814. doi: 10.1007/s00122-016-2741-z. Epub 2016 Jul 4.
4
Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
BMC Plant Biol. 2016 Jan 27;16 Suppl 1(Suppl 1):7. doi: 10.1186/s12870-015-0687-y.
6
The whole genome assembly and evolution analyze of carmine radish () Mitochondrion.
Mitochondrial DNA B Resour. 2020 Jun 1;5(3):2252-2253. doi: 10.1080/23802359.2020.1772136. eCollection 2020.
7
Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing.
Mol Genet Genomics. 2017 Oct;292(5):1151-1163. doi: 10.1007/s00438-017-1338-9. Epub 2017 Jun 30.
8
The complete mitochondrial genome of cultivated radish WK10039 (Raphanus sativus L.).
Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(2):941-2. doi: 10.3109/19401736.2014.926496. Epub 2014 Jun 17.
9
Genetic diversity of VIR Raphanus sativus L. collections on aluminum tolerance.
Vavilovskii Zhurnal Genet Selektsii. 2020 Oct;24(6):613-624. doi: 10.18699/VJ20.655.
10
Whole-Genome Sequencing and Analysis of Tumour-Forming Radish ( L.) Line.
Int J Mol Sci. 2024 Jun 5;25(11):6236. doi: 10.3390/ijms25116236.

引用本文的文献

本文引用的文献

1
Photosynthesis and nitrogen relationships in leaves of C plants.
Oecologia. 1989 Jan;78(1):9-19. doi: 10.1007/BF00377192.
2
Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink.
Plant Cell Physiol. 2016 Dec;57(12):2451-2460. doi: 10.1093/pcp/pcw169. Epub 2016 Oct 13.
3
Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.
Cell Mol Life Sci. 2017 Mar;74(6):1075-1093. doi: 10.1007/s00018-016-2380-1. Epub 2016 Sep 27.
4
Characteristics of Genome Editing Mutations in Cereal Crops.
Trends Plant Sci. 2017 Jan;22(1):38-52. doi: 10.1016/j.tplants.2016.08.009. Epub 2016 Sep 17.
5
Identification of gamma ray irradiation-induced mutations in membrane transport genes in a rice population by TILLING.
Genes Genet Syst. 2017 Apr 4;91(5):245-256. doi: 10.1266/ggs.15-00052. Epub 2016 Sep 1.
6
CRISPR/Cas9: a promising way to exploit genetic variation in plants.
Biotechnol Lett. 2016 Dec;38(12):1991-2006. doi: 10.1007/s10529-016-2195-z. Epub 2016 Aug 29.
7
mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.
Plant Biotechnol J. 2017 Mar;15(3):367-378. doi: 10.1111/pbi.12631. Epub 2016 Sep 25.
8
Breaking-bud pollination: a new pollination process in partially opened flowers by small bees.
J Plant Res. 2015 Sep;128(5):803-11. doi: 10.1007/s10265-015-0741-8. Epub 2015 Jul 15.
10
Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.
Plant Biotechnol J. 2016 Jan;14(1):51-60. doi: 10.1111/pbi.12348. Epub 2015 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验