Suppr超能文献

和细菌元相互作用组的蛋白质相互作用组改善功能预测。

The Protein Interactome of and Bacterial Meta-interactomes Improve Function Predictions.

作者信息

Wuchty S, Rajagopala S V, Blazie S M, Parrish J R, Khuri S, Finley R L, Uetz P

机构信息

Department of Computer Science, University of Miami, Coral Gables, Florida, USA.

Center for Computational Science, University of Miami, Coral Gables, Florida, USA.

出版信息

mSystems. 2017 Jun 6;2(3). doi: 10.1128/mSystems.00019-17. eCollection 2017 May-Jun.

Abstract

The functions of roughly a third of all proteins in , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 proteins with previously unknown functions. Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen . We used an experimental approach to identify over 2,000 new protein interactions for , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

摘要

在一种重要的人类致病细菌中,约三分之一蛋白质的功能尚不清楚。我们采用酵母双杂交方法,确定了该生物体中2000多个新的蛋白质相互作用。我们用元相互作用组数据扩充了这个网络,我们将元相互作用组数据定义为其他细菌中进化保守蛋白质之间所有相互作用的集合。我们发现,这种相互作用显著提高了我们预测蛋白质功能的能力,使我们能够为299个功能先前未知的蛋白质提供功能预测。确定细菌物种中的蛋白质相互作用有助于明确蛋白质在细胞途径和发病机制中所起的个体作用。对于这种重要的人类病原体,目前仅确定了极少数蛋白质相互作用。我们采用实验方法为该病原体确定了2000多个新的蛋白质相互作用,这是迄今为止该细菌最为广泛的相互作用组数据。为了预测蛋白质功能,我们用来自其他密切相关细菌的相互作用扩充了我们的相互作用组数据。实验数据和元相互作用组数据的结合显著改善了预测结果,使我们能够为大量特征描述不足的蛋白质赋予可能的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56f/5513735/f7f6c2890258/sys0031721080001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验