Mehla Jitender, Dedrick Rebekah M, Caufield J Harry, Siefring Rachel, Mair Megan, Johnson Allison, Hatfull Graham F, Uetz Peter
Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
J Bacteriol. 2015 Aug 1;197(15):2508-16. doi: 10.1128/JB.00164-15. Epub 2015 May 18.
Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis.
Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics.
分枝杆菌噬菌体是感染分枝杆菌宿主的病毒,在环境中普遍存在。近700个分枝杆菌噬菌体基因组已被完全测序,揭示了相当大的多样性和基因新颖性。在这里,我们通过质谱法确定了分枝杆菌噬菌体贾尔斯的蛋白质组成,并绘制了其全基因组蛋白质相互作用组,以帮助阐明其77种预测蛋白质的作用,其中50%的蛋白质功能未知。使用四种不同的酵母双杂交(Y2H)载体进行了约22000次单独的酵母双杂交试验,随后进行筛选和重新测试筛选,产生了324种可重复的蛋白质-蛋白质相互作用,包括171种(136种非冗余)高可信度相互作用。贾尔斯蛋白质之间完整的高可信度相互作用集揭示了新的机制细节,并预测了未知蛋白质的功能。贾尔斯相互作用组是首个针对任何分枝杆菌噬菌体的相互作用组,也是迄今为止仅有的五个已知噬菌体相互作用组之一。我们的结果将有助于理解分枝杆菌噬菌体生物学,并有助于开发新的遗传和治疗工具来了解结核分枝杆菌。
结核分枝杆菌每年导致超过900万例新的结核病病例。分枝杆菌噬菌体,即分枝杆菌宿主的病毒,在理解噬菌体多样性、进化和分枝杆菌生物学方面具有巨大潜力,有助于开发控制分枝杆菌感染的治疗工具。分枝杆菌噬菌体贾尔斯的蛋白质-蛋白质相互作用网络使我们能够预测未知蛋白质的功能,并揭示噬菌体生物学中的主要生物学过程。例如,发现功能未知的贾尔斯gp76蛋白与噬菌体包装和成熟有关。分枝杆菌噬菌体衍生蛋白质的功能可能提示结核病的新治疗方法。我们的贾尔斯蛋白质开放阅读框克隆集和相互作用组数据将是噬菌体相互作用组学的有用资源。