Bertoglio Cristóbal, Caiazzo Alfonso, Bazilevs Yuri, Braack Malte, Esmaily Mahdi, Gravemeier Volker, L Marsden Alison, Pironneau Olivier, E Vignon-Clementel Irene, A Wall Wolfgang
Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.
Johann Bernoulli Institute, University of Groningen, Groningen, The Netherlands.
Int J Numer Method Biomed Eng. 2018 Feb;34(2). doi: 10.1002/cnm.2918. Epub 2017 Sep 28.
In computational fluid dynamics, incoming velocity at open boundaries, or backflow, often yields unphysical instabilities already for moderate Reynolds numbers. Several treatments to overcome these backflow instabilities have been proposed in the literature. However, these approaches have not yet been compared in detail in terms of accuracy in different physiological regimes, in particular because of the difficulty to generate stable reference solutions apart from analytical forms. In this work, we present a set of benchmark problems in order to compare different methods in different backflow regimes (with a full reversal flow and with propagating vortices after a stenosis). The examples are implemented in FreeFem++, and the source code is openly available, making them a solid basis for future method developments.
在计算流体动力学中,开放边界处的流入速度或回流,通常在中等雷诺数时就会产生非物理性的不稳定性。文献中已经提出了几种克服这些回流不稳定性的方法。然而,这些方法尚未在不同生理状态下的准确性方面进行详细比较,特别是因为除了解析形式外,很难生成稳定的参考解。在这项工作中,我们提出了一组基准问题,以便在不同的回流状态下(完全反向流动和狭窄后有传播涡旋的情况)比较不同的方法。这些示例在FreeFem++中实现,并且源代码是公开可用的,这使其成为未来方法开发的坚实基础。