Breton Marc D, Hinzmann Rolf, Campos-Nañez Enrique, Riddle Susan, Schoemaker Michael, Schmelzeisen-Redeker Guenther
1 Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.
2 Roche Diabetes Care, Mannheim, Germany.
J Diabetes Sci Technol. 2017 May;11(3):545-552. doi: 10.1177/1932296816680633. Epub 2016 Dec 13.
Computer simulation has been shown over the past decade to be a powerful tool to study the impact of medical devices characteristics on clinical outcomes. Specifically, in type 1 diabetes (T1D), computer simulation platforms have all but replaced preclinical studies and are commonly used to study the impact of measurement errors on glycemia.
We use complex mathematical models to represent the characteristics of 3 continuous glucose monitoring systems using previously acquired data. Leveraging these models within the framework of the UVa/Padova T1D simulator, we study the impact of CGM errors in 6 simulation scenarios designed to generate a wide variety of glycemic conditions. Assessment of the simulated accuracy of each different CGM systems is performed using mean absolute relative deviation (MARD) and precision absolute relative deviation (PARD). We also quantify the capacity of each system to detect hypoglycemic events.
The simulated Roche CGM sensor prototype (RCGM) outperformed the 2 alternate systems (CGM-1 & CGM-2) in accuracy (MARD = 8% vs 11.4% vs 18%) and precision (PARD = 6.4% vs 9.4% vs 14.1%). These results held for all studied glucose and rate of change ranges. Moreover, it detected more than 90% of hypoglycemia, with a mean time lag less than 4 minutes (CGM-1: 86%/15 min, CGM-2: 57%/24 min).
The RCGM system model led to strong performances in these simulation studies, with higher accuracy and precision than alternate systems. Its characteristics placed it firmly as a strong candidate for CGM based therapy, and should be confirmed in large clinical studies.
在过去十年中,计算机模拟已被证明是研究医疗设备特性对临床结果影响的强大工具。具体而言,在1型糖尿病(T1D)中,计算机模拟平台几乎取代了临床前研究,并常用于研究测量误差对血糖的影响。
我们使用复杂的数学模型,利用先前获取的数据来表征3种连续血糖监测系统的特性。在弗吉尼亚大学/帕多瓦T1D模拟器的框架内利用这些模型,我们在6种模拟场景中研究了连续血糖监测(CGM)误差的影响,这些场景旨在生成各种各样的血糖状况。使用平均绝对相对偏差(MARD)和精确绝对相对偏差(PARD)对每个不同CGM系统的模拟准确性进行评估。我们还量化了每个系统检测低血糖事件的能力。
模拟的罗氏CGM传感器原型(RCGM)在准确性(MARD = 8% 对比 11.4% 对比 18%)和精确性(PARD = 6.4% 对比 9.4% 对比 14.1%)方面优于另外两种系统(CGM - 1和CGM - 2)。这些结果适用于所有研究的血糖和变化率范围。此外,它检测到超过90%的低血糖情况,平均时间滞后小于4分钟(CGM - 1:86%/15分钟,CGM - 2:57%/24分钟)。
RCGM系统模型在这些模拟研究中表现出色,比其他系统具有更高的准确性和精确性。其特性使其成为基于CGM治疗的有力候选者,应在大型临床研究中得到证实。