Suppr超能文献

1 型糖尿病患者决策模拟器,用于模拟胰岛素治疗的安全性和有效性。

Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments.

出版信息

IEEE Trans Biomed Eng. 2018 Jun;65(6):1281-1290. doi: 10.1109/TBME.2017.2746340. Epub 2017 Aug 29.

Abstract

OBJECTIVE

Type-1 diabetes (T1D) treatment requires exogenous insulin administrations finely tuned based on glucose monitoring to avoid hyper/hypoglycemia. The safety and effectiveness of insulin treatments is commonly assessed in clinical trials, which are time demanding and expensive. These limitations can be overtaken by in silico clinical trials (ISCT) that require realistic patient and treatment models. The aim is to develop a T1D patient decision simulator usable to perform reliable ISCT.

METHODS

The T1D patient decision simulator was developed by connecting the UVA/Padova T1D model, which describes glucose, insulin, and glucagon kinetics, with modules describing glucose monitoring devices, like self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM), the patient's behavior in making treatment decisions, and insulin administration. The reliability of the simulator was assessed by comparing its predictions with data collected in 44 T1D subjects using the Dexcom G5 Mobile CGM sensor as an adjunct to the Bayer Contour Next USB SMBG device.

RESULTS

Metrics like time spent in eu/hypo/hyperglycemia of simulated data well match those observed in subjects. In particular, mean time in euglycemia, mean time in hyperglycemia, and median time in hypoglycemia are 61.75% versus 63.60% (p-value = 0.4825), 33.38% versus 33.40% (p -value = 0.9950), and 3.17% versus 2.14% (p-value = 0.1134), respectively, in real versus simulated data.

CONCLUSION

The proposed simulator can be used to perform credible ISCT in realistic insulin treatment scenarios.

SIGNIFICANCE

The T1D patient decision simulator can be used to reliably assess novel insulin treatments, e.g., based on use of CGM only, in a realistic multiple-day scenario.

摘要

目的

1 型糖尿病(T1D)的治疗需要根据血糖监测结果精细调整外源性胰岛素的给药剂量,以避免高血糖/低血糖。胰岛素治疗的安全性和有效性通常在临床试验中进行评估,而临床试验既费时又昂贵。这些局限性可以通过计算机临床试验(ISCT)来克服,这种方法需要使用现实的患者和治疗模型。目的是开发一种可用于进行可靠 ISCT 的 T1D 患者决策模拟器。

方法

通过连接 UVA/Padova T1D 模型来开发 T1D 患者决策模拟器,该模型描述了血糖、胰岛素和胰高血糖素的动力学,以及描述血糖监测设备(如自我血糖监测(SMBG)和连续血糖监测(CGM))、患者在做出治疗决策时的行为以及胰岛素给药的模块。通过将模拟器的预测结果与使用 Dexcom G5 Mobile CGM 传感器作为 Bayer Contour Next USB SMBG 设备的辅助设备收集的 44 名 T1D 患者的数据进行比较,评估了模拟器的可靠性。

结果

模拟数据中的时间分布在血糖正常、高血糖和低血糖的时间比例与患者观察结果非常吻合。特别是,模拟数据中血糖正常时间、血糖高时间和低血糖时间的平均值分别为 61.75%比 63.60%(p 值=0.4825)、33.38%比 33.40%(p 值=0.9950)和 3.17%比 2.14%(p 值=0.1134)。

结论

所提出的模拟器可用于在现实的胰岛素治疗场景中进行可信的 ISCT。

意义

T1D 患者决策模拟器可用于在现实的多天场景中可靠地评估新型胰岛素治疗方法,例如仅基于 CGM 的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验