Suppr超能文献

UVA/帕多瓦1型糖尿病模拟器:新特性

The UVA/PADOVA Type 1 Diabetes Simulator: New Features.

作者信息

Man Chiara Dalla, Micheletto Francesco, Lv Dayu, Breton Marc, Kovatchev Boris, Cobelli Claudio

机构信息

Department of Information Engineering, University of Padova, Padova, Italy.

Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.

出版信息

J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.

Abstract

Recent studies have provided new insights into nonlinearities of insulin action in the hypoglycemic range and into glucagon kinetics as it relates to response to hypoglycemia. Based on these data, we developed a new version of the UVA/PADOVA Type 1 Diabetes Simulator, which was submitted to FDA in 2013 (S2013). The model of glucose kinetics in hypoglycemia has been improved, implementing the notion that insulin-dependent utilization increases nonlinearly when glucose decreases below a certain threshold. In addition, glucagon kinetics and secretion and action models have been incorporated into the simulator: glucagon kinetics is a single compartment; glucagon secretion is controlled by plasma insulin, plasma glucose below a certain threshold, and glucose rate of change; and plasma glucagon stimulates with some delay endogenous glucose production. A refined statistical strategy for virtual patient generation has been adopted as well. Finally, new rules for determining insulin to carbs ratio (CR) and correction factor (CF) of the virtual patients have been implemented to better comply with clinical definitions. S2013 shows a better performance in describing hypoglycemic events. In addition, the new virtual subjects span well the real type 1 diabetes mellitus population as demonstrated by good agreement between real and simulated distribution of patient-specific parameters, such as CR and CF. S2013 provides a more reliable framework for in silico trials, for testing glucose sensors and insulin augmented pump prediction methods, and for closed-loop single/dual hormone controller design, testing, and validation.

摘要

最近的研究为低血糖范围内胰岛素作用的非线性以及与低血糖反应相关的胰高血糖素动力学提供了新的见解。基于这些数据,我们开发了UVA/帕多瓦1型糖尿病模拟器的新版本,并于2013年提交给了美国食品药品监督管理局(S2013)。低血糖时葡萄糖动力学模型得到了改进,纳入了这样一种观点,即当葡萄糖降至特定阈值以下时,胰岛素依赖性利用呈非线性增加。此外,胰高血糖素动力学、分泌和作用模型已被纳入模拟器:胰高血糖素动力学为单室模型;胰高血糖素分泌受血浆胰岛素、低于特定阈值的血浆葡萄糖以及葡萄糖变化率控制;血浆胰高血糖素会延迟刺激内源性葡萄糖生成。还采用了一种改进的虚拟患者生成统计策略。最后,实施了确定虚拟患者胰岛素与碳水化合物比值(CR)和校正因子(CF)的新规则,以更好地符合临床定义。S2013在描述低血糖事件方面表现更佳。此外,新的虚拟受试者很好地涵盖了真实的1型糖尿病患者群体,这体现在患者特异性参数(如CR和CF)的实际分布与模拟分布之间具有良好的一致性。S2013为计算机模拟试验、测试葡萄糖传感器和胰岛素增强泵预测方法以及闭环单/双激素控制器的设计、测试和验证提供了一个更可靠的框架。

相似文献

1
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.
2
The university of Virginia/Padova type 1 diabetes simulator matches the glucose traces of a clinical trial.
Diabetes Technol Ther. 2014 Jul;16(7):428-34. doi: 10.1089/dia.2013.0377. Epub 2014 Feb 26.
3
Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials.
J Diabetes Sci Technol. 2022 Sep;16(5):1270-1298. doi: 10.1177/19322968211015268. Epub 2021 May 25.
4
Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments.
IEEE Trans Biomed Eng. 2018 Jun;65(6):1281-1290. doi: 10.1109/TBME.2017.2746340. Epub 2017 Aug 29.
5
The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day.
J Diabetes Sci Technol. 2018 Mar;12(2):273-281. doi: 10.1177/1932296818757747. Epub 2018 Feb 16.
6
A composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers.
J Diabetes Sci Technol. 2013 Jul 1;7(4):941-51. doi: 10.1177/193229681300700416.
7
Basal Glucose Control in Type 1 Diabetes Using Deep Reinforcement Learning: An In Silico Validation.
IEEE J Biomed Health Inform. 2021 Apr;25(4):1223-1232. doi: 10.1109/JBHI.2020.3014556. Epub 2021 Apr 6.
8
A statistical virtual patient population for the glucoregulatory system in type 1 diabetes with integrated exercise model.
PLoS One. 2019 Jul 25;14(7):e0217301. doi: 10.1371/journal.pone.0217301. eCollection 2019.
9
The Padova Type 2 Diabetes Simulator from Triple-Tracer Single-Meal Studies: Trials Also Possible in Rare but Not-So-Rare Individuals.
Diabetes Technol Ther. 2020 Dec;22(12):892-903. doi: 10.1089/dia.2020.0110. Epub 2020 May 20.
10
Parallel Control of an Artificial Pancreas with Coordinated Insulin, Glucagon, and Rescue Carbohydrate Control Actions.
J Diabetes Sci Technol. 2019 Nov;13(6):1026-1034. doi: 10.1177/1932296819879093. Epub 2019 Oct 20.

引用本文的文献

1
Immune-evasive beta cells in type 1 diabetes: innovations in genetic engineering, biomaterials, and computational modeling.
Front Immunol. 2025 Aug 19;16:1618086. doi: 10.3389/fimmu.2025.1618086. eCollection 2025.
2
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories.
KDD. 2018 Aug;2018:1387-1395. doi: 10.1145/3219819.3220102. Epub 2018 Jul 19.
3
Generative artificial intelligence in diabetes healthcare.
iScience. 2025 Jul 5;28(8):113051. doi: 10.1016/j.isci.2025.113051. eCollection 2025 Aug 15.
5
Metabolic Models, in Silico Trials, and Algorithms.
J Diabetes Sci Technol. 2025 Jul;19(4):895-907. doi: 10.1177/19322968251338300. Epub 2025 Jul 1.
6
Analytical Basal-State Model of the Glucose, Insulin, and C-Peptide Systems for Type 2 Diabetes.
Bioengineering (Basel). 2025 May 21;12(5):553. doi: 10.3390/bioengineering12050553.
7
py-mgipsim: An Open-Source Python Library for Simulating Type 1 Diabetes With Diverse Meals and Physical Activities.
J Diabetes Sci Technol. 2025 May;19(3):855-856. doi: 10.1177/19322968251328664. Epub 2025 Mar 20.
8
A case study on using a large language model to analyze continuous glucose monitoring data.
Sci Rep. 2025 Jan 7;15(1):1143. doi: 10.1038/s41598-024-84003-0.
9
A GENERATIVE APPROACH TO TESTING THE PERFORMANCE OF PHYSIOLOGICAL CONTROL ALGORITHMS.
ASME Lett Dyn Syst Control. 2024 Aug 2;4(3). doi: 10.1115/1.4065934.
10
Time to Moderate and Severe Hyperglycemia and Ketonemia Following an Insulin Pump Occlusion.
J Diabetes Sci Technol. 2024 Nov;18(6):1472-1479. doi: 10.1177/19322968241280386. Epub 2024 Sep 6.

本文引用的文献

1
Pharmacokinetics modeling of exogenous glucagon in type 1 diabetes mellitus patients.
Diabetes Technol Ther. 2013 Nov;15(11):935-41. doi: 10.1089/dia.2013.0150. Epub 2013 Aug 26.
2
Diurnal pattern of insulin action in type 1 diabetes: implications for a closed-loop system.
Diabetes. 2013 Jul;62(7):2223-9. doi: 10.2337/db12-1759. Epub 2013 Feb 27.
3
Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes.
Diabetes Care. 2012 Aug;35(8):1757-62. doi: 10.2337/dc11-2010. Epub 2012 Jun 14.
4
Artificial pancreas: past, present, future.
Diabetes. 2011 Nov;60(11):2672-82. doi: 10.2337/db11-0654.
5
Diabetes: Models, Signals, and Control.
IEEE Rev Biomed Eng. 2009 Jan 1;2:54-96. doi: 10.1109/RBME.2009.2036073.
6
Nonlinear metabolic effect of insulin across the blood glucose range in patients with type 1 diabetes mellitus.
J Diabetes Sci Technol. 2010 Jul 1;4(4):873-81. doi: 10.1177/193229681000400416.
7
A bihormonal closed-loop artificial pancreas for type 1 diabetes.
Sci Transl Med. 2010 Apr 14;2(27):27ra27. doi: 10.1126/scitranslmed.3000619.
8
Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis.
J Diabetes Sci Technol. 2008 Jul;2(4):630-5. doi: 10.1177/193229680800200414.
9
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
J Diabetes Sci Technol. 2009 Jan;3(1):44-55. doi: 10.1177/193229680900300106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验