Sargent D F, Schwyzer R
Proc Natl Acad Sci U S A. 1986 Aug;83(16):5774-8. doi: 10.1073/pnas.83.16.5774.
Catalysis of ligand-receptor interactions is proposed as an important function of the lipid phase of the cell membrane. The catalytic mechanism is deduced from observed specific interactions of amphiphilic peptides with artificial lipid bilayers. In our model a direct ligand-receptor reaction is replaced by multiple sequential steps including surface accumulation of charged ligands, ligand-membrane interactions, and ultimately binding to the receptor itself. By dividing the total free energy of binding among several steps, the energy per step, including the intrinsic receptor interaction energy, is kept to moderate values. The model thereby yields simple explanations for the large apparent association constants, the high association and dissociation rates, and the heterogeneity of binding sites so frequently found with pharmacological and biochemical ligand-receptor interactions. Furthermore, the measured apparent association constant is a function of the whole system rather than just the receptor. The same, fully functional receptor may show different binding characteristics in different surroundings, such as in another tissue or in a reconstituted system.
细胞膜脂质相催化配体 - 受体相互作用被认为是一项重要功能。催化机制是从两亲性肽与人工脂质双层的特定相互作用推导出来的。在我们的模型中,直接的配体 - 受体反应被多个连续步骤所取代,这些步骤包括带电配体的表面积累、配体与膜的相互作用,以及最终与受体本身的结合。通过将总结合自由能分配到几个步骤中,每个步骤的能量,包括内在受体相互作用能,都保持在适度的值。该模型因此对大型表观缔合常数、高缔合和解离速率以及在药理学和生化配体 - 受体相互作用中经常发现的结合位点异质性给出了简单解释。此外,测得的表观缔合常数是整个系统的函数,而不仅仅是受体的函数。相同的、功能完全正常的受体在不同环境中,如在另一种组织或重组系统中,可能表现出不同的结合特性。