Deber C M, Behnam B A
Proc Natl Acad Sci U S A. 1984 Jan;81(1):61-5. doi: 10.1073/pnas.81.1.61.
In the course of their biological function, peptide hormones must be transferred from an aqueous phase to the lipid-rich environment of their membrane-bound receptor proteins. We have investigated the possible influence of phospholipids in this process, using 360-MHz 1H and 90-MHz 13C NMR spectroscopy to examine the association of the opioid peptides [Met]- and [Leu]enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) with phospholipid micelles. Binding of peptides to lipid was monitored in NMR spectra by selective chemical shift movements (e.g., the Phe aromatic ring protons) and residue-specific line broadening (e.g., of Met/Leu carbonyl- and alpha-carbon resonances). Results established that the zwitterionic hormones associate hydrophobically both with a neutral lipid (lysophosphatidylcholine) and (also electrostatically) with a negative lipid (lysophosphatidylglycerol). An association constant of Ka = 3.7 X 10(1) M-1 was calculated for the hydrophobic binding of enkephalin to lysophosphatidylcholine. NMR data suggested that enkephalin binds to the lipid with Met/Leu, Phe, and likely Tyr side-chain substituents associated with nonpolar interior regions of the micelle, whereas the COOH-terminal carboxylate moiety of the peptide is located in the surface of the lipid particle. An "attraction-interaction" model is proposed for hormone-lipid association wherein negative lipids attract the hormone electrostatically, while site-specific hydrophobic contacts facilitate its entry, concentration, and orientation into the lipid phase.
在其生物学功能过程中,肽类激素必须从水相转移至其膜结合受体蛋白富含脂质的环境中。我们利用360兆赫的1H和90兆赫的13C核磁共振光谱研究了磷脂在此过程中可能产生的影响,以检测阿片肽[甲硫氨酸]-和[亮氨酸]脑啡肽(酪氨酸-甘氨酸-甘氨酸-苯丙氨酸-甲硫氨酸/亮氨酸)与磷脂微团的结合情况。通过选择性化学位移移动(如苯丙氨酸芳香环质子)和残基特异性谱线展宽(如甲硫氨酸/亮氨酸羰基和α-碳共振),在核磁共振光谱中监测肽与脂质的结合。结果表明,两性离子激素既通过疏水作用与中性脂质(溶血磷脂酰胆碱)结合,也(通过静电作用)与负性脂质(溶血磷脂酰甘油)结合。计算得出脑啡肽与溶血磷脂酰胆碱疏水结合的缔合常数Ka = 3.7×10(1) M-1。核磁共振数据表明,脑啡肽与脂质结合时,甲硫氨酸/亮氨酸、苯丙氨酸以及可能的酪氨酸侧链取代基与微团的非极性内部区域相关,而肽的COOH末端羧基部分位于脂质颗粒表面。提出了一种激素-脂质结合的“吸引-相互作用”模型,其中负性脂质通过静电作用吸引激素,而位点特异性疏水接触则促进其进入、浓缩并定向进入脂质相。