Catalysis Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
Network of Institutes for Solar Energy (NISE), NCL Campus, Pune, 411 008, India.
Sci Rep. 2017 Jul 26;7(1):6515. doi: 10.1038/s41598-017-06849-x.
Any solar energy harvesting technology must provide a net positive energy balance, and artificial leaf concept provided a platform for solar water splitting (SWS) towards that. However, device stability, high photocurrent generation, and scalability are the major challenges. A wireless device based on quasi-artificial leaf concept (QuAL), comprising Au on porous TiO electrode sensitized by PbS and CdS quantum dots (QD), was demonstrated to show sustainable solar hydrogen (490 ± 25 µmol/h (corresponds to 12 ml H h) from ~2 mg of photoanode material coated over 1 cm area with aqueous hole (S/SO) scavenger. A linear extrapolation of the above results could lead to hydrogen production of 6 L/h.g over an area of ~23 × 23 cm. Under one sun conditions, 4.3 mA/cm photocurrent generation, 5.6% power conversion efficiency, and spontaneous H generation were observed at no applied potential (see S1). A direct coupling of all components within themselves enhances the light absorption in the entire visible and NIR region and charge utilization. Thin film approach, as in DSSC, combined with porous titania enables networking of all the components of the device, and efficiently converts solar to chemical energy in a sustainable manner.
任何太阳能收集技术都必须提供净正能量平衡,而人工叶子概念为太阳能水分解 (SWS) 提供了一个平台。然而,设备稳定性、高光电流产生和可扩展性是主要挑战。一个基于准人工叶子概念 (QuAL) 的无线设备,包括多孔 TiO 电极上的 Au ,由 PbS 和 CdS 量子点 (QD) 敏化,被证明可以持续产生太阳能氢气 (490 ± 25 μmol/h (相当于 12 ml H h),来自约 2 mg 的 photoanode 材料,涂覆在 1 cm 面积上,带有水性空穴 (S/SO) 清除剂。对上述结果进行线性外推,可能导致在约 23 × 23 cm 的面积上产生 6 L/h.g 的氢气产量。在阳光条件下,观察到 4.3 mA/cm 的光电流产生、5.6%的功率转换效率和自发 H 生成,无需施加电势 (见 S1)。自身内部所有组件的直接耦合增强了整个可见光和近红外区域的光吸收和电荷利用。与 DSSC 一样的薄膜方法,结合多孔 TiO2 能够将设备的所有组件联网,并以可持续的方式有效地将太阳能转化为化学能。