School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA.
Biology and Soft Matter Division, Oak Ridge National Laboratory, P.O. Box 2008, MS-6473, Oak Ridge, TN, 37831, USA.
Small. 2017 Sep;13(36). doi: 10.1002/smll.201700399. Epub 2017 Jul 27.
Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.
从小分子折叠蛋白组装成的囊泡具有与传统脂质或聚合囊泡不同的潜在功能。然而,它们在理解组装过程和控制囊泡性质方面也带来了挑战。通过对重组融合蛋白组装行为的详细研究,本工作报道了一种简单的策略,用于构建含有功能球形结构域的蛋白质囊泡。这是通过含有亮氨酸拉链和弹性蛋白样多肽的重组球形融合蛋白的可调自组装来实现的。融合蛋白通过拉链的高亲和力结合在溶液中形成复合物,并在升温时通过动态凝聚物转变为稳定的空心囊泡。热驱动力可以通过蛋白质浓度或温度进行调节,从而控制囊泡的大小以及囊泡是单层还是双层。这些结果为通过自组装构建具有所需大小和膜结构的球形蛋白囊泡提供了关键信息。