Suppr超能文献

理解球状融合蛋白凝聚体到囊泡的转变,以工程化蛋白囊泡的大小和膜异质性。

Understanding the Coacervate-to-Vesicle Transition of Globular Fusion Proteins to Engineer Protein Vesicle Size and Membrane Heterogeneity.

机构信息

School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , 950 Atlantic Drive NW , Atlanta , Georgia 30332 , United States.

Department of Chemical Engineering , University of Florida , 1006 Center Drive , Gainesville , Florida 32611 , United States.

出版信息

Biomacromolecules. 2019 Sep 9;20(9):3494-3503. doi: 10.1021/acs.biomac.9b00773. Epub 2019 Aug 28.

Abstract

Protein-rich coacervates are liquid phases separate from the aqueous bulk phase that are used by nature for compartmentalization and more recently have been exploited by engineers for delivery and formulation applications. They also serve as an intermediate phase in an assembly path to more complex structures, such as vesicles. Recombinant fusion protein complexes made from a globular protein fused with a glutamic acid-rich leucine zipper (globule-Z) and an arginine-rich leucine zipper fused with an elastin-like polypeptide (Z-ELP) show different phases from soluble, through an intermediate coacervate phase, and finally to vesicles with increasing temperature of the aqueous solution. We investigated the phase transition kinetics of the fusion protein complexes at different temperatures using dynamic light scattering and microscopy, along with mathematical modeling. We controlled coacervate growth by aging the solution at an intermediate temperature that supports coacervation and confirmed that the size of the coacervate droplets dictates the size of vesicles formed upon further heating. With this understanding of the phase transition, we developed strategies to induce heterogeneity in the organization of globular proteins in the vesicle membrane through simple mixing of coacervates containing two different globular fusion proteins prior to the vesicle transition. This study gives fundamental insights and practical strategies for development of globular protein-rich coacervates and vesicles for drug delivery, microreactors, and protocell applications.

摘要

富含蛋白质的凝聚物是与水相分离的液相,被自然界用于分隔,最近也被工程师用于输送和制剂应用。它们还是组装到更复杂结构(如囊泡)的中间相。由与富含谷氨酸的亮氨酸拉链(球蛋白-Z)融合的球状蛋白和与弹性蛋白样多肽(Z-ELP)融合的富含精氨酸的亮氨酸拉链制成的重组融合蛋白复合物显示出不同的相,从可溶性相,经过中间凝聚相,最后随着水溶液温度的升高,形成囊泡。我们使用动态光散射和显微镜以及数学建模研究了融合蛋白复合物在不同温度下的相转变动力学。我们通过在支持凝聚的中间温度下老化溶液来控制凝聚物的生长,并证实凝聚物液滴的大小决定了进一步加热时形成的囊泡的大小。通过对相转变的了解,我们在囊泡转变之前,通过简单混合含有两种不同球状融合蛋白的凝聚物,开发了在囊泡膜中诱导球状蛋白不均匀组织的策略。这项研究为开发富含球状蛋白的凝聚物和囊泡用于药物输送、微反应器和原细胞应用提供了基本的见解和实用策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验